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1. Introduction 

 
 Value-at-Risk (VaR) is a risk 
management methodology, which has 
been greeted with extensive focus in 
recent years from both academic 
researchers and practitioners. VaR 
provides a statistical quantification of the 
different components of risk into a single 
quantitative indicator. 
 Value at Risk measures the 
maximum probable loss which may occur 
for a portfolio in a certain period of time 
and a confidence interval (Jorion, 2001). 
Faced with a simple conceptual 
definition, the implementation of VaR can 
be achieved by various methods, which 
share a common procedural approach. 
 The outcomes of various 
approaches differ considerably, even if 
the models are based on the same basic 
notions, large differences are to be found 
regarding the use of data, the estimation 
procedures of the volatility and 
corelations. Not all VaR methodologies 
are based on portfolio approach, certain 
VaR estimation methods are built using 
historical simulation or some more 
complex approaches, eg Monte Carlo 
simulation method. 
 Implementing the VaR model is 
currently considered a goal of risk 
management , until now Basel II. offered 
banks the opportunity to design their own 
internal models to estimate risk, 
currently, Basel III requires that the 
models used by banks enhance the 
quality and quantity of capital of banks.  
 

2. Methodology 

 Value at Risk (VaR) is a 
statistical method for measuring the risk 
of a portfolio, so the potential maximum 
expected loss of the portfolio is 
represented for a given time horizon and 
a predefined confidence level. 

Thus, if we consider a probability 
such as c% (c representing the 
confidence level) and a period of time in 
days t, VaR is the measurement of the 
loss expected to be exceeded only with a 
probability (1-c)% in t days in the future. 
 The choice of c and t are 
subjective, depending on the confidence 
level c, which defines the degree of 
protection against the risks due to the 
various factors of the market movements. 
Typical values for c are 99%, 97.5%, or 
95%, the choice can be be relevant or 
not depending on the purpose for which 
VaR is calculated. So if VaR is used as 
an absolute measure of risk or a unit of 
comparison (ie. comparing the risk 
between different portfolios), c is only a 
scale factor. Of course, the higher the 
choosen confidence level is, the greater 
is the ability to reduce the losses by VaR  
(the level that is unlikely to be exceeded 
expected by the maximum loss). 
 Also the period of time t usually 
varies in from 1 or 2 days to 10 days ,or 
even a month. The underlying 
assumption is that the composition of the 
portfolio remains constant over the period 
of time considered, so the choice of time 
horizon should depend on the frequency 
with which the portfolio is subject to 
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manipulation and the time required for 
the liquidation of the portfolio. 
 The definition of of VaR can be 
be easily illustrated from a graphical point 
of view. Suppose that the change in the 
portfolio, ΔW is defined as 

tWWW  0 , where 0W  stands for 

the initial value of the portfolio, while tW  

for the value of the portfolio at the end of 
time horizon chosen. 
 

 
 

Probability distribution of the 
portfolio value changes of ΔW 

(Source: Pederzoli, Ch., Torricelli, C., 
(1999)) 

 
 In the chart above, starting 
from left (where the greatest losses can 
be found), the individual 
probability values areadded until they 
reach a cumulative probability of (1-c)%, 
resulting a VaR which separates the 
normal, expected value losses from the 
exceptional losses.   
 There are several methods for 
calculating VaR, characterized by 
different assumptions and different 
procedures, but a basic model can be 
identified, with common elements to all 
methods, including (Jorion, 2001)): 
 identifying the relevant risk factors, 

namely the factors affecting the market 
value of the portfolio; 
 estimating the probability distribution 

for the rate of returns for risk factors; 
 determining the probability 

distribution of portfolio yields in terms of 
profit and loss based on previous 
estimates; 

 determine VaR as the maximum 
loss at a level of probability of c%; 
 The common goal of all methods 
is to obtain an estimation of the 
probability distribution for the rate of 
returns, or rather to capture the changes 
in the portfolio value. 
 The Parametric models are those 
models which are based on variance-
covariance approach, in this paper we 
present the following ones: 

 The normal portfolio VaR  
 Asset-Normal VaR 
 Beta-Normal VaR 

 When using parametric models, it 
is assumed that financial assets in the 
trading book of the bank follows a known 
theoretical distribution, so VaR will be 
calculated based on the parameters of 
that distribution. Banks used most 
common parameters that vary over time, 
paying attention to recent observations 
and ignoring those in the distant past. 
The main advantage of these methods is 
that they perform a full characterization of 
the distribution yields, leading also to 
improved performance. 
 

The normal portfolio VaR 

 To calculate VaR, we consider 
only the total portfolio value, Π, and the 
volatility of portfolio return бΠ without 
decomposing it into its components. 
Assumptions regarding the daily rates of 
return are: 

 Independent; 
 The expected value is zero; 
 Distributed by the normal law of 

distribution 
 At a confidence level of 1% for N 
days, the VaR will be equal to Π * -2.33 * 
бΠ. 

Asset-Normal VaR 

 The portfolio is divided into its 
components and it is assumed that the 
daily return are normally distributed. In 
this case in the calculation of VaR we 
have to take into account the volatility 
and the correlations between returns. 
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The assumptions underlying the model 
are: 

 The portfolio is composed from n 
assets; 

 Changes in the portfolio value 
depend linearly from the variations of the 
n assets; 

 The probability distribution of the 
portfolio yields follow the normal 
distribution and are independent; 

 Variance portfolio includes 
correlations between profitability; 
Portfolio return and volatility are obtained 
from: 
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Where i  reprezents the volatility of 

asset i, while j stand for the volatility of 

asset j, ij  beeing the correlation 

between them. This model has also a 
limit, because when the portfolio is 
composed of several securities, it is 
necessary to calculate all the correlations 
between the assets. 

Beta-Normal VaR 

 It aims to simplify the variance-
covariance matrix needed to compute the 
VaR of the portfolio of shares. Therefore 
we consider Sharpe's model in which the 
yields of the securities comprising the 
portfolio are influenced by the market 
index return. Sharpe's method 
determines the selection of a set of 
efficient portfolios at each level of risk, 
maximizing the expected  profitability, 
without indicating an optimal portfolio for 
each investor. 

.,1,,,, NjRR tjtMjjtj    

 Given the assumptions of the 
econometric model, the elements from 
the the variance-covariance matrix of the 
rate of returns will have the expressions: 
The anticipated rate of returns: 
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The variance of the rate of returns: 
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The covariance between the title i and 
title j 
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The variance-covariance matrix can be 
written in the following form:  

                    EBBRM  '2 )(  

Where E represents the diagonal matrix 

of the variance of the residuals )(2

i , 

while B is the vector of Beta,and B’  
represents the transposed matrix. 
 Risk management models require 
a quantitative estimation of risk 
associated with a financial position, 
therefore we used these techniques to 
estimate the volatility: 

 Moving averages  
 The GARCH(1,1) model 
 The Risk Metrics model  

Moving averages 
a) Simple (Standard Deviation) 
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 The advantage lies in the availability of data given by the historical evolution of the rate of the returns  and the simple calculation. The downside is that the rates are constant, as the e choice of the calculation window. 
b) Weighted (EWMA) 
 Exponentially Weighted Moving 
Average variance was calculated as a 
weighted average of the  variable 
percentage of the historical series 
squared returns, using a constant 
weighting λ (decay factor), 0 <λ <1, 
indicating the "degree of permanence" of 
past observations.   
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Thus, lambda is obtained minimizing the 
expression: 
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We consider a time interval consisting in 
T days, and based on the historical 
evolution of the prices, the yields are 

calculated ( jtr  ,where 1j ) for each 

day in this time period. After that, the 
volatility iterations are written, and then 
through successive attempts the value of 
the degradation factor is searched so that 
it minimizes  from the formula above. 

The disadvantage lies in the choice of 
lambda. 

The GARCH (1,1) Model 

 It was proposed by T. Bollereslev  
in 1986, and it is a part of a broader class 
of GARCH (q, p) models. It enjoys a 
great popularity among practitioners 
because of its relative similarity to 
Engel's model. The variance is obtained 

by:
2
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where 1  . 

The forecast suggests that the variance 
is based, in this case, on the most recent 
observation of return on assets and on 
the last calculated value of the variance. 
The general GARCH (q, p) calculates the 
expected variance based on past q 
observations and the most recent p 
estimated variances. (Campbell,J., Lo, 
A., MacKinley, C., 1997 ). 

The Risk Metrics model 
 It is based on the assumption 
that the rate of returns  follow a normal 
distribution law and the VaR is calculated 
by the EWMA method. 
In this model the variance and 
covariance are determined using a 
weighted moving average exponential 
model. The biggest advantage  of this 
model is the speed at which it reacts to 
the unexpected market movements. The 
volatility equation can be described as 
follows: 
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Where 
2

t  represents the standard 

deviation, tR  the yields at the moment t, 

while   stands fot the average value of 

the distribution n is the time horizon, and 
λ the exponential factor that captures the 
persistence of volatility, with values 
between 0 and 1. So 1- λ λ is a 
parameter that captures the shock 
absorption of the market volatility. The 
RiskMetrics department uses a value of 
0.94 in order to estimate the daily 
volatility and a value of 0.97 for monthly 
estimates. 
Taking into account the above, the 
volatility of asset i at time t can be written 
as follows: 
 
                                                                                                                                    
 
And the correlation between the returns 
can be built in the same manner: 
 
                                                                                                                                    
 
 From the non-parametric 
models or rather those based on 
simulation models used to determine 
VaR in this paper we present the 
following ones:  
 Historical Simulation Method 
 Filtred Historical Simulation Method 
 Monte Carlo Simulation Method 
 In the case of simulation-based 
approaches it is necessary to construct a 
range of hypothetical future values of 
portfolio profitability, which combined with 
relative frequencies gives us the shape of 
the probability distribution of future 
portfolio returns and losses. So using the 
distribution obtained the level of VaR can 
be read considering a certain confidence 
level. 
 There are two types of 
procedures that can be used to create 
hypothetical probability distributions, one 
based on historical data simulation, and 
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another that provides random data 
generation.  

a) Historical Simulation Method 

a1) Historical Simulation (HS) 

 In this approach, the value of 
VaR of a portfolio is estimated by 
creating a series of hypothetical returns 
for a portfolio. This are obtained by 
running the portfolio with real historical 
data and calculating changes that had 
occurred in each period. 

a2) Historical simulation with 
bootstrapping (HS BOOT) 
 
 So far we have assumed that the 
period for calculating VaR  is the same 
as the frequency of historical data, which 
in practice is not always true. Solving this 
problem comes along with bootstrapping 
method's. Bootstrapping in practice 
means that instead of using every return 
included in the sample of historical 
returns only once, a large number of N 
values will be extracted from the sample 
values (and the extracted values will be 
reintroduced each time into the sample, 
so the same return will be twice chosen 
or more). In this case, VaR is calculated 
based on a random causal extraction, 
following the normal law, with 10,000 
values from the series of the portfolio rate 
of returns series from the classical 
historical simulation.  

b) Filtred Historical Simulation 
Method 

b1) Filtered Historical Simulation (FHS) 

 By using this method greater 
weights are given to the most recent 
yields, and therefore to the recent market 
volatility, this feature is not considered by 
the classical historical simulation. 
 VaR is calculated based on a 
filtered time series of return obtained by : 

 GARCH volatility estimates for 
each asset in the portfolio;  

 calculating the scaled returns for 
each asset in the portfolio, which are 

obtained by dividing the returns to the 
GARCH volatility; 

 calculating the filtered returns for 
each asset in the portfolio, by 
multiplicating the scaled returns with the 
predicted Garch volatility  obtained for t 
+1. 

b2) Filtered Historical Simulation  with 
bootstrapping  (FHS BOOT) 

 In the case of this method Value 
at Risk is obtained from a random 
extraction of 10,000 values from the 
filtered return series obtained by classical 
historical simulating. 

b3)  Clasic Filtered Historical Simulation 
(FHS BIS) 

 
 VaR is calculated based on the 
historical rates of return of the portfolio, 
which is  considered as a single asset 
obtained by: 

 GARCH volatility estimates for the 
portfolio as a single asset. 

 calculating the scaled returns for 
each asset in the portfolio, which are 
obtained by dividing the returns to the 
GARCH volatility; 

 calculating the filtered returns for 
the portfolio, by multiplicating the scaled 
returns with the predicted Garch volatility  
obtained for t +1. In this way  the 
distribution of the yields is consistent with 
both past and current simulated volatility, 
and if the GARCH model was estimated 
correctly, the returns are identical and 
independently distributed. 

b4) Filtered Historical Simulation with 
bootstrapping (FHS BIS BOOT) 

 VaR is obtained based on a 
casual extraction of 10.000 values from 
the the filtered return series obtained by 
classical historical simulating, considering 
the portfolio as a single asset. 

c) Monte Carlo Simulation 

 In the case of the Monte Carlo 
simulation the yields of the bank's trading 
book are obtained by generating different 
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scenarios for the considered risk factors, 
and then calculating the value of the 
portfolio under these conditions. By 
extracting  a random sample from the 
probability distribution that describes the 
behavior of a probabilistic variable, the 
simulation model reproduces the random 
nature of the uncontrollable variable. 
Monte Carlo method is used most often 
when we need to calculate the expected 
value of a function f (x), with the given 
density probability distribution ψ(x): 
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The value sought through this method is 

as it follows: s n

xxs dxfm  )()(   

 Regarding the validation of 
models we use VaR back-testing and we 
determined the number of times, and as 
the VaR limit was exceeded and thus two 
approaches: 

 The binary loss function approach: 
- k factor that helps determine capital 
adequacy. The test can be described as 
follows:  
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 The quadratic loss function 
approach:- are used to compare different 
VaR models and consists of the following 
test: 
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 where P is the loss of the portfolio. The 

test result is: 
i

iTT  

 Following the results of back-
testing  the area of risk will be 
determined in which the bank is located, 
and on that basis  the value of "k" will be 
determined, from the formula of the 
capital requirement for market risk. As a 
bank will record multiple exceedances of 
VaR, the more it will move toward the 
major risk area and accordingly will be 
penalized.   

 The maximum number of errors 
of the VaR on a short period of time 
horizont, namely 250 days, accepted by 
the Basel Committee is 4, otherwise the 
VaR model is not appropriate. BCBS 
defines the following risk areas: 
 Safe risk area: up to four errors of 

VaR; 
 Medium risk area: between four 

and  nine errors of the VaR; 
 Major risk area: ten errors of the 

VaR. 

3.   Empirical findings  

 The statistical data used in this 
study consist of the daily stock closing 
prices of 6 shares, which were extracted 
from http://bvb.ro/. The sample period is 
between 14.02.2008-03.03.2011, where 
we considered a theoretical portfolio of a 
bank which would consist of the 
securities Erste Group Bank, SIF Banat-
Crişana, SIF Moldova, SIF Transilvania, 
SIF Muntenia, SIF Oltenia. We calculate 
VaR (1, 99%) of the portfolio for all 
working days from 03.03.2009 to 
03.03.2011. Based on these rates the 
logarithmic daily price changes were 
calculated using the 

formula:  1ln  ttt SSr . 

Non parametric VaR calculation 
methods 

The normal portfolio VaR 
 
To calculate VaR, we consider only the 
total portfolio value, Π, and the volatility 
of portfolio return бΠ without 
decomposing it into its components, EBS 
and SIF. Then we calculate the VaR 
given that the confidence level is 99% 
and within one day, in the form бΠ * -2.33 
* Π. 

http://bvb.ro/
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Normal Portfolio VaR 
(Source: own processing) 

From the chart above we can see that in 
most cases the loss / profit for the owner 
of the portfolio is covered by VaR, its 
value being much more greater than the 
face value of the portfolio. 

Asset Normal VaR 

 The portfolio is divided into 
components, namely the EBS and SIF 
titles. We assume that the daily returns of 
the security are normally distributed. In 
this case the calculation of VaR will take 
into account the volatility of the titles EBS 
and SIF,  but also the correlations 
between them. 
The assumptions of the underlying model 
are: 

 The portfolio is composed of two 
assets: EBS and SIF; 

 Changes in the value of the 
portfolio depend linearly of the variations 
of the titles EBS and SIF; 

 The rate of returns of the titles 
EBS and SIF follow a normal distribution 
and are independent; 

 The variance of the portfolio 
includes the correlations between the 
rate of returns of the titles EBS and SIF. 
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The evolution of VaR (1,99%) Asset 
Normal VaR (Risk Metrics)  
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     (Source: own processing) 

 
Beta Normal VaR 
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The evolution of Beta Normal VaR(MM) 
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(Source: own processing) 

 

EWMA VaR 

-8.0E+09

-7.0E+09

-6.0E+09

-5.0E+09

-4.0E+09

-3.0E+09

-2.0E+09

-1.0E+09

2009M07 2010M01 2010M07 2011M01

VaR(1,99%)

EWMA VaR

 
The evolution of EWMA VaR 
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(Source: own processing) 

GARCH VaR 
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The evolution of GARCH VaR 
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(Source: own processing) 

 
Risk Metrics VaR 
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The evolution of Risk Metrics VaR 
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Performance evaluation of VaR 
models 

 To test the effectiveness the 
back-testing technique was used, by 
simulating the last 504 days of stress 
scenarios. We used quadratic approach 
procedure, determining how many times 
in this time interval VaR was exceeded, 
but also the linear approach procedure 
by which we could see the value of 
average error and average excess. 

The results of back-testing  
(The binary loss function approach and 
the quadratic loss function approach) 

Nr. 
errors 

Average 
error  

Average 
excess 

1. Normal Portfolio VaR 
 

6 -917.378.236 4.267.798.239 

2.Asset-Normal VaR(MM) 

8 -176.655.453 4.280.300.514 

3.Asset-Normal VaR(Risk Metrics) 

8 -10.334.090 4.091.219.802 

4.Beta-Normal VaR(MM) 

5 -12.043.148 4.688.855.562 

5.VaR Garch 

6 -9.236.371 4.168.446.233 

6. VaR Risk Metrics 

8 -10.330.808 4.026.222.001 

7. VaR EWMA 

5 -1.469.100 3.360.634.074 
(Source: own processing) 

  
Regarding the parametric models 

implemented in the bank's stock portfolio, 
we can observe that all the models used 
are at the medium risk area. The number 
of errors is between 5 and 9 to a sample 
of 504 daily data. From the table above 
we can see that it is very important to 
determine the linear approach of losses. 
We can have the same number of errors 
/ overrun in terms of size but in the case 
of some models, the average error is 
significantly higher and different as 
compared to others. 
 The most representative models 
for determining the Value at Risk in the 
quadratic approach are the  Beta-Normal 
VaR  and EWMA, while in the linear 
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approach the EWMA, GARCH models 
stand out, with the Risk Metrics and 
Asset Normal models with very similar 
values. 

Therefore we should not accept a 
model based only on the number of 
errors / overruns, but rather we should 
take into account the average error, 
which is a more relevant indicator. 

Non parametric models 
(The approach based on simulation) 

 This approach is intended to 
generate scenarios and simulate models 
based on the historical returns of the 
theoretical portfolio of the bank.. In the 
case of BOOT HS, VaR is calculated 
based on a casual extraction of 10,000 
values from the rate of returns of the  
portfolio from HS.  

The results of classical historical 
simulation and bootstrapping 

 HS HS BOOT 

N=1 -13,263% -10,141% 

VaR(99%) 
-

9.785.027.077 
-

7.597.358.685 

((Source: own processing) 

 
We can observe from the table above 
that the values are quite close in terms of 
probable maximum loss of the portfolio. 

VaR calculation with the Filtered 
Historical Simulation  

 For the Filtered Historical 
Simulation FHS, Value at Risk is 
calculated based on the filtered rate of 
returns of the portfolio, while in the case 
of BOOT FHS VaR was calculated based 
on 10,000 casual extractions from the 
filtered return  of the series of the 
portfolio. 

The results of filtred historical simulation 
and with bootstrapping 

 FHS FHS BOOT 

N=1 -3,341% -3,349% 

VaR(99%) 
-

2.588.661.588 
-

2.594.336.441 
(Source: own processing) 

Drawing a parallel between the 
results obtained by the classical 
simulation method and by bootstrapping, 
we can see that the potential loss in the 
last case is much lower. 

The results of filtred historical simulation 
for the portfolio considereted unique 

asset and with bootstrapping 

 FHS BIS 
FHS BIS 
BOOT 

N=1 -4,317% -4,264% 

VaR(99%) 
-

3.328.941.248 
-

3.288.563.176 
(Source: own processing) 

 By calculating Value at Risk we 
could notice that the maximum probable 
loss given the confidence interval varies 
in terms of simulating methods based on 
filtered. Greater loss is recorded when 
we consider the portfolio as a single 
asset, and do not decompose it into its 
components, in this case the two titles. 
When using bootstrapping technique the 
values are quite close to those of the 
classical Filtered historical simulation 
method, namely the classical Filtered 
historical simulation method which 
consider the portfolio as a single asset.   

VaR calculation with the Monte Carlo 
Simulation 

 The method is flexible and can 
be applied to all types of portfolios, but 
requires a higher computing power and 
the careful selection of valuation models 
for financial assets in the portfolio 
composition. 

                 Monte Carlo Simulation 

 Monte Carlo 

N=1 - 5,692% 

VaR(99%) - 4.484.145.747 
(Source: own processing) 

Regarding the non parametric 
models for calculating Value at Risk, we 
could notice the period under 
consideration that both the classical 
filtered simulation and bootstrapping 
methods were those with the lowest 
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value, followed by higher values of VaR 
for historical simulation.  

4. Conclusions 

 Despite its limits, VaR is one of 
the most popular methods used to 
measure and prevent the manifestation 
of market risks. In an attempt to capture 
this risk, we used non-parametric 
models, based on simulation to calculate 
VaR, but also parametric models, with 
theire advantages and disadvantages, 
but also models for calculating the 
volatility and correlations. In order to 
implement a successful VAR estimation, 
the accuracy of this depends on the 

portfolio return distribution. Although the 
normal distribution is the easiest to use in 
practice, it may lead to an 
underestimation of the risk and capital 
allocation, because in the reality the data 
series have elongated tails 
corresponding to extreme market 
movements. It is appropriate to identify 
specific Value at Risk models for each 
portfolio, but we must never forget that 
each of these models has its own 
advantages and disadvantages, that 
relate to the probable maximum loss to a 
certain degree of confidence. 
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