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1. Introduction 
 

A particularly important issue that 
arises when it comes to options is fixing 
their value. The emergence of 
quantitative techniques that allow 
operators to follow the evolution of 
financial assets price has multiplied the 
transactions on futures markets. 

Evaluation options theory has its 
roots in Bachelier's research (1900) who 
used Brownian motion to evaluate 
French options on government bonds. 
Only in the early '70s options valuation 
methods have begun to gain consistency 
by  determining a formula for calculating 
the price of European options by Fischer 
Black and Myron Scholes.  

Black and Scholes (1973) are the 
pioneers in pricing option theory. They 
started from the premise that if options 
are properly evaluated, there can be 
certainly no gain from the sale and 
purchase of options and underlying 
assets. Using this principle, they 
introduced a formula for determining the 
theoretical value of an option. This model 
is the starting point for most further 
research. So Broadie, Detemple, Ghysels 
and Torres (2000) determine the price of 
American options when the asset's 
support provides a stochastic dividend 
yield. They show that an American option 
is worth the sum of the European option 
premium and the premium  for exercising 
the option before maturity. Chance, 
Kumar and Rich (2002) provided 
conditions under which the standard 

formula Black-Scholes-Merton is valid, 
even if the dividend is stochastic. To do 
this, they assumed that the present value 
of future dividends is observable and a 
forward contract can be obtained by 
trading these accumulated dividends. To 
obtain an explicit formula for determining 
the option price when the market is 
incomplete, Geske (1978) used the 
CAPM (Capital Asset Pricing Model) to 
balance the risk premium in the 
economy. From Black-Scholes-Merton 
model, Lioui A. (2006) obtained new 
formulas to evaluate options by 
considering the stochastic dividend yield. 
Some of the hypotheses Black-Scholes-
Merton model are removed under the 
new approach. 

Unlike Black and Scholes who 
used the principle of continuous 
valuation, Cox, Ross and Rubenstein 
designed the binomial model for 
calculating the price of an American 
option, based on the approximation of a 
continuous process with a discreet one. 
This model was presented in 1979 in 
Option Pricing: A Simplified Approach. 
Model summary consists in simulation of 
underlying asset price evolution by 
dividing the time to maturity in a certain 
number of short periods. Binomial 
method is useful and very popular for 
American call and put on a stock 
providing dividends. The basic principle 
of this model is that the underlying asset 
price can either increase or decrease in 
the next period. 
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2. Black-Scholes formula for 
determining the price of European 

options 
 

Black-Scholes model for 
determining the price of a European 
option is widely used in practice because 
it requires knowledge of observable 
parameters:  the underlying asset price, 
the strike price, the time to maturity of the 
option, the continously compounded risk-
free rate and a parameter to be 
estimated independently, the underlying 
assets volatility. The model is based on a 
set of assumptions of which the most 
restrictive are: the underlying asset yield 
are normally distributed, volatility remains 
constant throughout the life of the option, 
there are no transaction costs and it can 
borrow money at the risk free rate. 

Starting price evaluation model 
of European options by Black and 
Scholes developed in the '70s, it was two 
formulas for determining the price a 
European call option (c) and a European 
put option (p): 
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The function N(x) is the 

cumulative probability distribution 
function for a standardized normal 
distribution. In other words, it is the 
probability that a variable with a standard 
normal distribution with average 0 and 
standard deviation 1. S0N(d1) is the 
present value of the asset if the option is  

exercised, and 
)( tTrXe 
 is the present 

value of the strike price if the option is  
exercised. 
S0 – the stock price at time 0; 

X – the strike price; 
σ – the underlying assets volatility; 
r – the continously compounded risk-free 
rate; 
T-t – the time to maturity of the option. T 
is the maturity, and t is the moment to 
maturity (at option issue t=0). 

Previous formulas are used 
when the underlying asset does not 
generate earnings. The amount of 
dividends generated by the underlying 
asset of the option affects its price and, 
accordingly, the option price. Thus, the 
posting of dividends results in lower 
premium for call options, and to increase 
for the premium for put options. If the 
underlying asset generates earnings, 
formulas for determining the price of an 
option are: 
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, 
and q  is the annual dividend yield if the 
underlying asset is a share or an index 
and the risk-free asset rate of foreign 
currency if the underlying asset is the 
exchange rate.  

Existence of an analytical 
solution for the price of a European 
option allows analyzing how their prices 
respond to changes of variables and 
parameters is determined. It's the Black-
Scholes model assumptions, the 
variables: the underlying price (S) and 
time to maturity (T-t) and the parameters: 
the underlying assets volatility (σ), the 
continously compounded risk-free rate (r) 
and the strike price (X).  



Year IX, No.12/2010                                                                                                   139 

 

Options price response to the 
changes of these variables are virtually 
the sensitivity coefficients of the premium 
and main elements for measuring the risk 
that these financial assets involve and 
are used to define practices cover such 
risks. In addition, the indicators facilitate 
the development of cash flows generated 
by derivative in the underlying asset 
trading, technique which can be useful if 
certain financial portfolio management 
strategies involve derivatives. 

Given the importance of knowing 
the sensitivity indicators, we will continue 
this way of determining their values in 
relation to different variables and their 
use. 

Delta (Δ) is the most famous on 
Greek letters and it measures the option 
price sensitivity to variations in the price 
of the underlying asset.  

Delta is calculated as the first 
derivative of on option price to a change 
in the price of the underlying asset when 
the other parameters remain constant. 
Practically, delta is the number of units of 
the underlying asset we should hold for 
each option shorted in order to create a 
riskless hedge.  

 For a European option on a non-
dividend-paying stock, it can be shown 
that: 
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The delta of a call option is 
always positive, that is to say, a variation 
in the price of the underlying asset 
implies a variation, in the same direction, 
in the price of the call option. On the 
other hand, the value of a put option 
decreases if the price of the underlying 
asset increases, implying, therefore, a 
negative delta. 

For European options on an 
asset paying a yield q, we have:  
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Gamma (Γ) measures the delta 
sensitivity to changes in the underlying 
asset and it is represented 
mathematically as second derivative of 
option price to underlying price or first 
order derivative of the delta to S. Gamma 
is identical for both call and the put option 
and can be positive or negative. For a 
European option on a non-dividend-
paying stock, it can be shown that:  
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For a European call or put option 

on an asset paying a continous dividend 
at rate q: 

 

tTS

edN tTq

pc







)(

1 *)('
 

Geometric, gamma is the slope 
of the graph Δ = f(S) or convexity option 
price to underlying price changes, was 
used to measure risk coverage, so the 
risk position delta neutral. 

Gamma presents values close to 
zero when the option is out of the money 
or in the money and the maximum value 
when the option is at the money, 
especially when the time to maturity is 
reduced. 

Theta (Θ) measures the option 
price change over time, while the other 
parameters are constant. To determine 
the theta of a European option on a non-
dividend-paying stock, there are  using 
the following formulas: 
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For a European call or put option 

on an asset paying a continous dividend 
at rate q: 
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Theta is in most cases a 

negative parameter, because as they 
approach maturity, option value tends to 
decrease. Exception to this observation 
are European put options on shares that 
have a very strong position in the money, 
or call options in the money on 
currencies that have a very high interest 
rate. 

Vega (K). Black-Scholes formula 
has been demonstrated in the constant 
volatility underlying assumption for the 
time the option price is calculated. In 
practice, volatility is a variable parameter, 
which determines the option price 
changes. These changes are calculated 
using vega which  represents the first 
derivative of an option value to volatility. 

For a European option, a call or 
a put, having an underlying asset that 
generates no gain,  coefficient is given by 
the following formula: 
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For a European call or put  
option on an asset providing a dividend 
yield at rate q: 
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 Vega is always a positive 
coefficient and a higher value indicates a 
high sensitivity to option volatility 
changes. If vega has low volatility 
changes, it will have a little impact on 
option price. Strong out or in the money 
options have a low vega, and the one at 
the money high, especially when maturity 
is delayed. 

Rho (Ρ) measures the sensitivity 
of the option value of interest rate and it 
is calculated as the first derivative of 
option price to interest rate. For a 
European option, a call or a put, having 
an underlying asset that generates no 
gain, the  coefficient is given by the 
following formula: 
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The same formula applies if the 
underlying European option generates 
dividend. 
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Rho is always positive for a call 
option, while for a put option the 
coefficient is negative.  

Example no. 1: Consider a 
European call option and a European put 
option on a stock that generate dividend 
and it has the following characteristics: 
S=10 RON, E=11 RON, r=8.5%, σ=22%, 
T=3 months, q=2%. 

Applying the previous formulas, 
we obtain: 

Call premium=0.157455 
Put premium=0.976046 
 

Determination of sensitivity 
coefficients of an option 

 Call Put 

Delta 0.252167 -0.7428446 

Gamm
a 

0.2895241 0.2895241 

Vega 0.01592383 0.01592383 

Theta -0.002332 -0.0003694 

Rho 0.00591056 -0.0210112 

 Source: Own calculations using DerivaGem 

 
By the values of delta, it is noted 

that an increase by one unit in spot price 
determines an increase by 0.252167 
RON in the call premium and a reduction 
by 0.7428446 RON in the put premium. 

Gamma takes the value 
0.2895241, which means that an 
increase in the share price by 1 RON 
(from 10 to 11) will increase the option 
value with 0.2895241 RON. 

Vega is 0.01592383, which 
means that if the underlying volatility 
increase by one percentage point (from 
22% to 23%), then both call and put 
premium will increase by 0.01592383. 

Theta indicates the rate of 
change of the option premium with 
respect to the passage of time. The 
reduction of time to maturity by one day 
leads to a reduction by 0.002332 in call 
premium and by 0.0003694 in put 
premium. 

Rho shows that if the interest 
rate increase by one percentage point, 
then call premium increase by 

0.00591056, and put premium decrease 
by 0.0210112. 

Considering the coefficients 
delta, gamma and theta defined above, 
equation can be rewritten with the Black-
Scholes partial differential according to 
them. Thus, the relationship between 
delta, gamma and theta for a European 
option, in the Black-Scholes model 
assumptions is: 
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In addition, it is noted that these 
indicators interact and may not be 
regarded as separate entities. 

A higher volatility increases the 
delta for out of the money and at the 
money options and it brings down in the 
money options, property resulting from 
delta to measure the probability of 
exercising the option. Changing the 
gamma to the increased volatility is more 
pronounced for at the money options and 
lower for those out of the money. 

 
3. A one-step binomial tree 

 
Consider a call option on a non-

dividend-paying stock. The assumptions 
of the model are the same for the Black-
Scholes model, that the market id 
efficient, there are no transaction costs 
and no tax,  securities are perfectly 
divisible, short selling is allowed, 
revenues generated by traded securities 
are remunerated at the risk free rate, r, 
which is constant, volatility remains 
constant throughout the life of the option. 
Add to this fact that the price of the 
underlying asset follows a binomial 
process in a time T, so this is the only 
hypothesis on the evolution of the 
underlying asset price. So, if at the time 0 
the stock price is S, this can move up in 
T by u times with probability p or to move 
down with probability 1-p. The process 
described is called the binomial 
multiplicative process. 
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The binomial model is based on 
building a risk free rate portfolio with a 
short position in a call option and a long 
position in Δ shares.  

 

 A one-step binomial tree 

 

Example no. 2: We propose to 
evaluate an European call option with a 
maturity of three months and the exercise 
price of 11 RON. A stock price is 
currently 10 RON. We suppose that at 
the end of three months the stock price 
will be either 12 RON or 9 RON. If the 
stock price turns out to be 12 RON, the 
value of the option will be 1 RON. If the 
stock price turns out to be 9 RON, the 
value of the option will be zero. 

Consider a portfolio consisting on 
a short position in a call option and a long 
position in Δ shares. We calculate the 
value of Δ that makes the portfolio 
riskless. If the stock price moves up from 
10 to 12 RON, the value of the option is 
1RON, so that the total value of the 
portfolio is 12Δ-1. If the stock price 
moves down to 9 RON, the value of the 
portfolio will be 9Δ. The portfolio is 
riskless  if the value of Δ is chosen so 
that the final value of the portfolio is the 
same for both alternatives. This means 
12Δ-1=9Δ → Δ=0,333. 

The riskless portfolio contains 33 
shares and one option. Whether the 
stock price moves up or down, the value 
of the portfolio is always 3 RON 
(12*0,333-1=9*0,33333≈3). 

In the absence of arbitrage 
opportunities, riskles portfolios must earn 
the risk-free rate of interest. Suppose that 
the risk-free rate is 6% per annum. It 

follows that the present value of the 
portfolio is: 

3 e
-0,06*3/12

=2,955 
The value of the stock price 

today is 10 RON. If we denote the option 
price by f, then: 

10x0,333-f=2,955 
f=0,378 

In conclusion, in the absence of 
arbitrage opportunities, the current value 
of the option must be 0,378 RON. If the 
value of the option were more than 0,378 
RON, the portfolio would cost less than 
2,955 RON and would earn more than 
the risk-free rate.  

We can generalize the argument 
just presented by considering a stock 
whose current price is f. We denote with 
T the maturity of the option and we 
suppose that during the life of the option 
the stock price can either moves down to 
Sd or moves up to Su, where u>1 and 
d<1. The proportional increase in the 
stock price when is an up movement is u-
1, and the proportional decrease when 
there is a down movement is 1-d. If the 
stock price moves up to Su,we suppose 
that the payoff from the option will be fu 
and if the stock price moves down to Sd, 
we suppose that the payoff from the 
option will be fd. 

We will calculate the value of Δ 
that makes the portfolio riskless. It 
follows that Δ can be  chosen so that the 
final value of the portfolio be the same 
whether the price of the underlying asset 
increases or decreases during T. 

SuΔ-fu =SdΔ-fd →Δ=
d)-S(u

f-f du
 

In this case the portfolio is 
riskless and must earn the risk-free 
interest rate. The previous equation 
shows that Δ is the ratio of the change in 
the option price to the change in the 
stock price as we move between the 
nodes. If r is the risk-free rate, the 
present value of the portfolios: 

(SuΔ- fu)e
-rT 

The cost of setting up the 
portfolio is SΔ- f. 

S 

S 
 

fu 

 

 
d 

f 
 

 

 

  f 
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It follows that:  
SΔ- f=(SuΔ- fu)e

-rT 

f= SΔ-(SuΔ- fu)e
-rT 

Substituting for Δ and simplifying, 
we obtain: 

 f= e
-rT

[p fu+(1-p) fd] 

where p=
du

d



rTe
 

In the numerical example 
considered previously, u=1.2, d=0.9, 
r=0.06, T=0.25, fu=1, fd=0. It follows that: 

p=
9.02.1

9.0e0.06x0.25




=0.38371 

f=e
-0.06x0.25

[0.38371x1+(1-
0.38371)x0]=0.378 

 

4. Generalized Binomial Model  
 

The one-step binomial tree cand 
be exetended for a number of n periods, 
considering all possible states of the 
stock price, with i up movements and n-i 
down movements.  

The stock price is initially S, the 
risk-free rate is r, and the length of the 
time stept is δt years. Given the previous 
results we obtain: 

fu= e
-rδt

[pfuu+(1-p)fud] 
fu= e

-rδt
[pfud+(1-p)fdd] 

f= e
-rδt

[pfu+(1-p)fd] 
Substituting the first two 

equations into the last, we have: 
f=e

-2rδt
[p

2
fuu+2p(1-p)fud+(1-p)

2
fdd]  

Example no. 3: We consider the 
call option with the same characteristics 
as in the previous example. 

 

 
Our objective is to calculate the 

option price at the initial node of the tree. 
We begin by setting the option price at 
the final nodes. At node D the stock price 
is 14.4, and the option price is 14.4-

11=3.4. At nodes E and F, the option is 
out of the money an its value is zero. At 
node C, the option price is zero because 
node C leads to either node E or node F 
and at both nodes the option price is 
zero. 

We will calculate the option price 
at node B. We know that u=1.2, d=0.9, 
r=0.06, T=0.25, so p=0.38371. It follows 
that the value of the option at node B is  

 

e
-0.06x0.25

[0.38371x3.4+(1-0.38371) x0]=1.285 
 

It remains for us to calculate the 
option price at node A. Thus the value of 
the option is 

  

e
-0.06x0.25

[0.38371x1.285+(1-0.38371) x0]=0.486 
 

The formula can be extended for 
n periods using the same mechanism 
with i up movements and n-i down 
movements of the stock price, for an 
European call option being: 

c= e
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In a similar manner, it can 
calculate for an European put option: 

p= e
-n rδt 
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Previous formula  describe some 
widely used algorithms especially in the 
valuation of the options which offer 
exercise opportunities before the maturity 
or whose underlying assets generate 
dividends. 

Essentially, after choosing the 
number of periods for dividing the option 
life – usually 30 or more steps- it is built 
the binomial network for the underlying 
asset, following that the option price to be 
determined little by little starting with the 
final nodes of the network.  

Example no. 4: We consider an 
European call option with a maturity of 
three months and the exercise price of 11 
RON. A stock price is currently 10 RON, 
the risk free-rate is 8% per annum, the 
volatility is 22% per annum. 

The figure below illustrates the 
binomial tree with 10 steps. 
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Binomial tree with 10 steps for the underlying asset price and an European call option 

 
 

Determination of sensitivity 
coefficients with binomial model can be 
done by the transcription of definitions in 
dicrete form, considering the interval δt. 

Thus, it obtains for a call option: 

 delta  
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For the first step, the coefficient 
can be expressed as:  

 gamma  
2
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S
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As we can see gamma can be 
calculated with a delay of two periods δt 
and for the first two periods its value can 
be approximated: 
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In the event that this period the 
underlying asset price, or the other 
parametters remain constant, the 
coefficient can be approximated for the 
first two nodes: 

 

t

ff

2

2021   

 vega 


 fff
K






 

where f* is the value of the option 
for  the volatility σ+δσ. 

 rho


 ff

r

f
P






 

Estimation of sensitivity 
coefficients in the manner described 
above is useful for following up hedging 
transactions, whose continuoully 
sequence is not possible. 

Example no. 5: We consider an 
European call option with a maturity of 
three months and the exercise price of 11 
RON. A stock price is currently 10 RON, 
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the risk free-rate is 8% per annum, the 
volatility is 22% per annum. 

Sensitivity coefficients have the 
values below in Black-Scholes version 

and in binomial version with 2, 10, 20, 30, 
50, 100 steps. 

 
Calculation of sensitivity coefficients. Black-Scholes Model vs. Binomial Model 

 
Black-
Sholes 
Model 

Binomial 
Model  
n=2 

Binomial 
Model  
n=10 

Binomial 
Model  
n=20 

Binomial 
Model  
n=30 

Binomial 
Model  
n=50 

Binomial 
Model  
n=100 

Delta 0.264465 0.236763 0.260251 0.257564 0.262967 0.261829 0.263946 

Gamma 0.297461 0.25986 0.302752 0.301808 0.298978 0.299448 0.29793 

Vega 0.016360 0.021132 0.015410 0.019129 0.015711 0.016667 0.015817 

Theta -0.00251 -0.00218 -0.00253 -0.00252 -0.00252 -0.00252 -0.00251 

Rho 0.006193 0.005455 0.006156 0.006113 0.006235 0.006216 0.006264 

        

 Source: Own calculations using DerivaGem 

 
It can be seen that the the 

differences are becoming smaller as the 
number of steps increases. 

Similarly, sensitivity coefficients 
can be calcaulated for a put option. 

  
5. Conclusions 

 
Used both for hedging risks and 

for speculation, the options are found in 
the portfolios of various institutions - from 
hedge funds and financial institutions, 
corporations or individual investors. 

Options have demonstrated 
successfully their important role in the 
financial markets. In an ideal setting, 
derivatives pricing theory provides a 
framework in which the risks inherent to 
an option’s position can be minimized or 
eliminated via a dynamic hedging 
strategy. In practice, however, the 
effectiveness of such strategy can be 
limited due to the lack of available 
hedging instruments and market 
microstructure issues such as transaction 
costs and market illiquidity. In addition to 

the generally high leverage or sensitivity 
of derivatives value to the change of 
underlying asset value, a unique and yet 
very important risk to options is the so-
called model risk that arises whenever 
derivatives pricing and/or hedging 
strategies are based on a miss-specified 
model.  

Options prices, as those assets 
that constitute their support, are affected 
by several factors. Knowing these factors 
and how they affect the value of options 
is essential to use as a tool for financial 
risk management. Sensitivity coefficients 
of the options premium measure the 
response of their price to each of the 
factors influencing it, providing an image 
of the risk of a position on an option. 

The previous examples have 
shown that the difference in the 
calculation by the two models  
of options price and their sensitivity 
coefficients disappear as the number of 
binomial tree steps increases. 
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