
Year XV, No. 17/2015 113

Algorithmic Trading at Bucharest Stock Exchange

Adrian Victor SĂNDIŢĂ1

1University of Craiova, Faculty of Mathematics and Natural Sciences
asandita@inf.ucv.ro

Abstract: Very conservative estimates indicate that over 40% of transactions on the
stock exchanges in the United States are based on automatically generated orders.
Such systems are designed to do algorithmic trading on the basis of a predefined set
of rules that determine the composition of the portfolio and the moment in which the
purchases and sales of securities are done. Applying highly diverse trading strategies,
algorithmic trading systems ultimately aim to maximize profit and minimize risk taking.
Algorithmic trading on the Bucharest Stock Exchange is still in its incipient phase. Now,
automated trading systems are used only for participants who act as Market Makers for
the actions of a few issuers. Estimates indicate a volume of algorithmic trading on the
Bucharest Stock Exchange of under 1% of its total transactions. This paper aims to
describe a general way that algorithmic trading systems can be connected to the
Bucharest Stock Exchange and to present some of our results in the implementation of
such a system.

Keywords: Algorithmic trading; Multi Agent Systems; Information management;
Bucharest Stock Exchange

JEL classification: C41, C81

1. Introduction

Applications that are oriented to agents represent a new paradigm of software

engineering that appeared through the merger of two technologies: artificial intelligence
and distributed computing (Odell & Burkhart, 1998).

The term "agent" or "software agent" is increasingly common in recent years in
computer networks, artificial intelligence and databases. Although there is no
universally accepted definition of the term, all definitions indicate the agent as being a
specialized software component, having a relative autonomy and behaving like a
human agent, interacting with the environment in which they operate and possibly with
other agents (F. Bellifemine, G. Caire, D. Greenwood, 2007).

Although one can imagine situations in which certain issues can be solved by a
single agent that interacts with the environment and communicate with users, complex
systems require the presence of several agents. These systems, called multi-agent
systems (MAS) can model complex situations and may involve defining agents with
common or contradictory objectives. Agents can interact with each other directly,
through communication and if needed through negotiation or indirectly through joint
environmental action. Agencies may decide to cooperate for mutual benefit or to
compete in order to fulfill their tasks.

Thus, the relevant characteristics of agents are: autonomy, as it can operate
without the direct intervention from the user and possess the capacity to control their
actions and internal conditions; social skills, which allow them to collaborate with each
other (or the user); reactivity, which represents the ability to perceive the environment
in which they act and react to changes.

Oriented Modeling allows agents to have an unconventional approach to
system design, including defining the components and system integration. A multi-

114 Finance – Challenges of the Future

agent system is used to solve a complex problem that can not be solved by a single
entity. Coordination conduct independent agents is a central part of the multi-agent
system design.

Agents have the ability to efficiently process local data and communicate with
other agents when necessary, for example when the tasks are beyond their scope of
knowledge or exceed their processing ability.

Multi-agent systems have been used in a wide range of applications such as e-
commerce, e-learning, data mining, simulation, robotics, transportation systems and
grid computing.

2.Objectives

This paper aims to present the interface of a multi-agent system designed to

generate, insert and automatically cancel purchase orders and sales in the BSE
system.

Trading decisions are based on technical analysis algorithms and techniques
to minimize and control risk.

Introducing and modifying or canceling orders is performed using the Trading
Gateway Arena system provided by BSE.

3. System Analysis

 Arena Gateway
Produced by BSE and available to agents acting in the romanian stock market

in, Arena Gateway (AG) is a complex application that facilitates message transfer
between the central system and applications dedicated to the participants (ADP). It
offers services request / response, event-based services, and connectivity. Using a
system of XML messages transmitted over the network, AG receives orders and
requests from ADP, sends them to the stockmarket’s central system and provides
answers and market data to the applicant. The Arena Gateway is installed on a
computer from the user’s internal network and connects via VPN to the stockmarket’s
system. The Client Arena Gateway, ADP is the dedicated application, acquired or
produced by the participant connected to the AG, that can send commands can
receive and process responses.

Fig. 1. BSE transaction system connections

Year XV, No. 17/2015 115

The communication protocol between the AG and ADP is a concatenation of
standardized sequences, the first sequence being start, followed by the message body,
a MD5 checksum on the message body and a final length. Start and end sequences
are 9 bytes each, 2-byte checksum, while the message body has a variable length. For
the encoding of the message body the UTF-8 character set (Universal Coded
Character Set Transformation Format + 8-bit) is used.

To avoid confusion, the body of the message may not contain the start or end
sequences. ADP works with two types of messages:

• outgoing messages: messages that are sent to the central stock market
system by the ADP using AG;
• incoming messages: messages from the central system via AG.
For the application, the message body is interpreted as an XML formatted text.

XML message structure is fully described using XML schema file, supplied with the
application. Each outgoing message will be reviewed and validated using the schema
file. If it detects a message that does not comply with the constraints scheme AG
sends an error report to the ADP and ignores the message.
It should be noted that some of the messages that describe the same market condition
may vary from one participant to another. For example, when a participant introduces a
market order, the Broker Code field of the message is filled with the Id if the message
is sent to the one who introduced order and is void if message sent to any of the other
participants.

Outgoing messages description
Any outgoing message consists of a command designed for the central control

system, followed (if needed) by specific parameters (if the certain command has
parameters) and a numerical sequence, called client sequence – csq, generated and
managed by the client application that enables it to identify the answer received after
the order processing of the stock market system. The csq field is not modified by the
stock market system.
An outgoing message has the following general structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<m:outgoingEngineMessage xmlns:c="http://www.bvb.ro/xml/ns/arena/gw/constraints"
xmlns:m="http://www.bvb.ro/xml/ns/arena/gw/msg"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <content xsi:type=…>
 …
 </content>
 <csq>nnnnn</csq>
</m:outgoingEngineMessage>

Input messages description
Each received message has a header and an internal structure that

incorporates an order confirming a report, information on the change of market data
etc. All these structures are called Data Transfer Objects (DTA).

An incoming message has the following general structure:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<m:incomingEngineMessage xmlns:c="http://www.bvb.ro/xml/ns/arena/gw/constraints"
xmlns:m="http://www.bvb.ro/xml/ns/arena/gw/msg"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

116 Finance – Challenges of the Future

 <content xsi:type=…>
 …
 </content>
 <csq>nnnnn</csq>
 <err>false</err>
 <id>213</id>
 <kmsg>to ADMIN: Hello</kmsg>
 <ktime>2015070827174849441</ktime>
</m:incomingEngineMessage>

A recieved message can either be a response to a previous command, in
which case it has a sequence equal to the client sequence order or can be a market
event desription, in which case the csq value is zero. The common fields of a message
entry are described below:

Field name Description

id
Message ID. In relation to the value of this field, the ADP can interpret
the message content.

ktime
The moment in which the message was generated by the central
system, in the form of yyyyMMddHHmmssSSS:
an+lună+zi+ore+minute+secunde+milisec.

kmsg Comment, message or error description

err Error indicator. Can be true or false

csq
Client sequence, used to identify the receiving message after
transmitting a command with the same csq. If the value is 0, the
message is unsolicited.

content
Message content, built from one or more data structures packed
together. This can also have a null value.

Monitoring the connection to the Gateway Arena
Once a connection is established, the ODA can test the connection status by

sending Heartbeat (HeartBeatCmd) messages to the gateway. When AG receives
such a message, it replies with a void content message.

Sending orders and the confirmation process
ADP can send commands to the AG at any time after logging in. Any

command that reaches the central system is followed by a response confirming the
execution of the order or a specific error message if the command could not be
executed. In the event of an error message, the message body is null, but the kmsg
field contains explanations about the error.

Report requests and response processing
ADP may request complex AG structural information in the form of complex

structured reports. A report request sent by the Central System AG will determine the
issue by requesting a response containing one or more pages of records or an error
message. If an error message appears, the entry message content is null, but the
kmsg field contains the description of the error that occurred. As the number of entries
on a page is limited, in order to get all the information in a report, ADP has to request
further data until it receives the last page of records.

Year XV, No. 17/2015 117

Subscription mechanism
In order to receive information about a symbol, ADP must inform the central

system that it is interested in the certain symbol by using the LoadSymbolCmd
command. The central system memorizes the symbol and provides date to the
customer until it is no longer requested and explicitly solicits to not receive more data
(the UnloadSymbolCMD Command). By a similar mechanism, to receive market data
for a symbol-market entity, ADP subscribes to the pair symbol-market through the
AddSubscribeCmd command. The data will be received until the ADP opts out of
receiving them via the command DelsubscribeCmd.

Change processing
After a successful authentication, ADP will receive a MarketPictureDto

structure containing a list of market entities: symbols, symbol-market pairs, indices etc.
Typically, each entity contains two types of information: its properties and its current
state. Whenever an entity or the state of ownership of the entity changes, ADP is
notified so that they can build an exact local image of the entity.

A symbol-market entity is a composed entity, consisting of the symbol and the
market in which it is traded. For a symbol there may be several symbol-market pairs,
as a symbol may be traded on multiple markets using different trading mechanisms.

The properties of an entity may be delivered by the Gateway as an integrated
ExchangeExplorerDto structure in various messages. For example, an instance in
which such information is available is within a UserEnvDto after reaching the
connection or after login every time those properties are changed during a session
within the TickersPack message.

The summary of an entity (except the symbol-market) will be present at the
time of login as a structure incorporated in a package UserEnvDto or during the
session as a list of PublicTickerMsg packed in a message TickersPack.

Structural changes (for example when a symbol is removed from a given
market) will arrive during the session ExchangeExplorerDto like structures packed in a
TickersPack message.

The processing of Level 1 market
Level 1 refers to information on the current trading symbol-market entities (best

bid/ask, the last transaction, the total volume, the total value variation, the opening
price, the minimum price, maximum, etc.). Level 1 data are supplied in two different
ways: first, when logging in using symbol-market summary pairs and secondly, during
the session, as CommonTickersPack structures embedded inside TickersPack
messages.

We emphasize once again that the Level 1 data will only be available to
subscribed market-symbol pairs.

When a single order transaction occurs at different prices, ADP will receive a
number of TickersPack messages which is equal to the number of distinct transaction
prices.

The processing of Level 2 data
In order to get a complete picture of a pair symbol ball-market, ADP must first

obtain an initial picture of the order book which will be updated after any change
through integrated structures within ActionTickerPack.

The initial image is obtained by a GetMarketByOrderCmd command launched
when the session starts. The answer to this command will be a MboDto structure
containing the order book as a pair of lists OrdDto structures.

118 Finance – Challenges of the Future

Even if for a symbol, MboDto contains only one list of orders on both sides
(buying and selling), the elements of this list are sorted according to the trading priority
for each part.

ADP client lists must build two orders: one for buying and another one for
selling, without changing the original sorting order. This is required because changes in
the order book which arrive as ATP objects must be applied to the initial list.

Own orders can be identified in their order book by testing the field own which
will then have the value true. For reasons of confidentiality, orders entered by other
participants will have certain fields set to irrelevant values (e.g., for an order released
by another participant, the field retaining the account of the user that gave the order
will always be set to 0) .

Arena Gateway Cache
Arena Gateway maintains its own cache in the online order book in order to

respond more quickly to requests from GetMarketByOrder. After UserEnvDto order is
processed, ADP will begin to receive a series of unsolicited messages which will
contain orders from the order book. The series begins with a start message followed by
messages which describe the order registry for each subscribed market-symbol pair
and ends with a message announcing the end of the initialization operation

After the end of the initialization, the GetMarketByOrder command will get the
answer built in the cache if the user is subscribed to the requested symbol-market and
the order book is in the cache. If the user is not subscribed to the symbol-market, the
GetMarketByOrder order will receive an error message. If the user has recently
subscribed to a market-symbol pair and the order register has not yet been fully loaded
in the cache, as a reply to the GetMarketByOrder command, the ADP will get an error
message which signals that the update has not yet been finished.

Command
Type

Command Name Description

System

LoginCmd Login command

LogoutCmd Logout command

HeartBeatCmd
Test the connection between the client
and the gateway

Business

LoadSymbolCmd
Load a symbol in the client’s virtual
environment

AddOrderBuyCmd Buy order command

AddOrderSellCmd Sell order command

AddCrossOrdersCmd
Add cross orders for immediate
execution

UpdateMMOrdersCmd
Add or change a pair of orders (a
quote)

CancelMMOrdersCmd Delete a pair of orders (a quote)

AddSubscribeCmd Subscribe to a symbol-market

CancelOrderCmd Cancel an order

ChgOrderCmd Change an order

DelSubscribeCmd Unsubscribe from a symbol-market

GetMarketByOrderCmd Get order book snapshot

ReleaseOrderBuyCmd Resume a buy order

ReleaseOrderSellCmd Resume a sell order

SuspendOrderCmd Suspend an order

Year XV, No. 17/2015 119

UnloadSymbolCmd
Unload a symbol from the client’s
virtual environment

MailCmd Send message to another user

Report
Request

Find2AccountCmd
Find details about two accounts in a
single request

FindAccountCmd Find details about an account

FindFreshOrderReportCmd Find an order (by order number)

GetGenericOrderAuditCmd
Get all records related to an order (
order audit)

GetOrdersDailyLogCmd
Get all records related to all orders (for
current member)

GetOutstandingOrdersCmd
Get outstanding orders (for current
member)

GetDailyTradesCmd
Get trades from current date (for
current member)

GetUsersByNameCmd Get users (connected or by member)

GetSymbolsByNameCmd
Get list of symbols (based on load
status)

GetDailyPublicTradesCmd Get all public trades from current date

GetDailyIndicesCmd
Get the value of indices from current
date

GetStepsCmd Get all the lists of price steps

GetPublicParametersCmd
Get the parameters for all markets and
symbol-markets

 The Multi Agent System
The Multi Agent System architecture consists of four types of interacting

agents. The system enables easy scaling and adding of agents for real-time data
analysis (Sandita, 2014). Its architecture is shown in Figure 2.

Figura 2. MaS Arhitecture

The main components of multi-agent system are:
The coordinating agent is the most complex component of MAS. Equipped with

s graphical interface, it provides the user the necessary information about the system
status and the market developments. At the same time, it enables the user to intervene
in the trading process in real time and to modify the parameters of the agent system.

120 Finance – Challenges of the Future

When deemed appropriate, responding to market conditions, it enables or disables
data analyzing agents.

The risk assesment agent is placed on either one of the local area network
computer and has the task of monitoring transations done by the coordonating agents.
It receives transation data from the dispecer agent and according to the preset risk
threshold and the market conditions it sends a stop ongoing actions signal to the other
system agents. Before the stop signal, the risk evaluator signals via system message
its entry into action. After the interruption caused by the agent, the system must be
started manually by the user.

Data analysis agents are specialized agents that receive market information
via the coordinating agent, analyse quotations and volume of transactions in real time
and transmit signals to it. They are equipped with an internal evaluation mechanism
that determines the workload assessment data and quantifies the time necessary to
accomplish the tasks. When exceeding a preset threshold, the data analysing agents
emit to the coordinator an overload signal. In this situation, the coordinator activates
another analysis agent, dormant on another workstation and relieves the overloaded
agent of one of the current tasks by transferring it to the new agent. Shares and
reliability degree given for each agent are predefined and stored in the database
assigned to the agent system.

The dispatcher agent, the subject of this paper, provides the data transfer from
the Gateway Arena to the MAS. In the following we will present the way it works and its
accomplished tasks.

4. Implementation and Results

The dispatcher agent, liaises with the Gateway assigned to the application and

can be placed on any of the computers on the internal network.
At system initialisation, through LoginCmd command the dispatcher agent

autheticates into the BSE system and ensures the consistency of the data stream
flowing between trading server and system agents. It is always active and directs the
flow of unsolicited data to the coordinator agent, which in turn transfers them to the
agent dedicated to data analysis.

The dispatcher agent periodically generates to the Gateway and to the
coordinator heartbeat signals to ensure the continuity of data links.

Now, the frequency of heartbeat signals is one every two seconds.
If the Heartbeat message sent to the Gateway doesn`t receive a reply, the

dispatcher agent transmits to the coordinator an error message and attempts to
reestablish communication after an interval of 5 seconds. If it manages to reestablish
the connection with the Arena Gateway, it sends the current system status data to the
coordinating agent and flow resumes.

Upon receiving the error message on the lack of connection with the Arena
Gateway, the coordinating agent in turn emits an error message to the graphic
interface; this way the user is informed about the interruption of data flow.

If the Heartbeat message sent to the coordinating agent receives no response,
the dispatcher sends an error signal to the broker via MailCmd command, routed
through the Arena Gateway.

As it is possible for the message to not reach the recipient if both connections
are down simultaneously, the coordinator agent has its own mechanism for handling
communication errors. While the coordinator agent does not send Heartbeat messages
to the dispatcher agent, it notifies the lack of messages from it, and after a time frame
set at 4 seconds, it sends to the GUI a warning message.

Year XV, No. 17/2015 121

Because communication failures within the MaS can leave the system in an
unstable state, the occurrence of such errors involves initiating a manual reset by the
user.

In this case, after the Login and restoring of the current state of the system, all
market orders placed earlier are automatically canceled and GUI is forwarded a report
on operations carried out in the current trading session BSE.

In this way, it eliminates the possibility of the system losing control over
previously submitted orders, before the loss of connection, or to ignore transactions
made while being disconnected.

The dispatcher agent has a data transfer synchronizing mechanism and a
tracking of potential time lags mechanism in terms of data received from the Gateway
and that transferred to the MAS.

To this point, there was no record of deferral of such data.
The system presented above is realized in Delphi and it is in a real

envinroment testing period since early 2015. So far it suffered major transformations
only regarding the mechanism of data analysis agents administration.

5. Conclusions

Mobile agent systems can be successfully used in practice. The scalability and

reliability of such a system has been demonstrated by implementing it in a real and
strongly competitive environment such as that of the BSE. The distribution of tasks
across multiple calculus systems facilitates the delivery of performance due to the
global uniform loading of such a system.

The challenge that we will have to face is the implementation at data analysis
agents level of more efficient change trend of quotations detection techniques.

Greater attention will be paid to the agent coordinating the implementation of
an automated system of weights that allow quantifying and assessing the reliability of
data provided may be granted one or other analytical agency. Currently, static weights
are given by the user, based on previous results.

Acknowledgements. This work was cofinaced from the European Social Fund through
Sectoral Operational Programme Human Resources Development 2007-2013, project
number POSDRU/159/1.5/S/140863, Competitive Researchers in Europe in the Field
of Humanities and Socio-Economic Sciences. A Multi-regional Research Network.

References

Bellifemine F., Caire G., Greenwood D. (2007), Developing Multi-Agent

Systems with JADE, John Wiley & Sons, Ltd.
Hendershott T., Riordan R. (2013), Algorithmic Trading and the Market for

Liquidity, Journal Of Financial And Quantitative Analysis.
Odell, J., & Burkhart, R. (1998). Beyond objects: Unleashing the power of

adaptive agents. Tutorial presented at OOPSLA, Vancouver, B.C.
Posland S (2007), Specifying Protocols for Multi-Agent Systems Interaction,

ACM Trans. Autonom. Adapt. Syst.
Sandita A. (2014), Automated transaction based on multi agent systems,

Conferinţa „Provocările discursului academic actual: teme, tendinţe, metode”, Brașov.
Stoll H.(2010), Electronic Trading in Stock Markets, Journal of Economic

Perspectives
* * *, Arena® Gateway 3.0.0, User Manual, Bucharest Stock Exchange, 2014.

