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Abstract: Chaos Theory aims to find the underlying order from apparently
random data. Every economic process produce one or many time series.
Determining if the process is or not chaotic may supply valuable
information about how to deal with that process. There is no single test
that identify chaos, so to say that a system is chaotic is better to perform
more tests.
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1. INTRODUCTION

Chaotic systems are in fact complex deterministétesns with a large number
of variables that influence the evolution of theqass making it impossible for humans
to simulate it and therefore making them seems edigtable. This, also, makes it
impossible to determine the initial state of thstegn knowing just the final state.

Chaos is met in: solar system dynamics, evolutfopopulations, the weather,
chemical reactions, etc. Also, the economy careba 8as a chaotic system, a factor that
brings a huge number of variables is direct involeat of people. The chaos from
complex systems is known as chaos deterministic.

Chaotic behavior is indicated by the following iaas:

» Chaotic processes are nonlinear processes.

» Chaotic processes are deterministic processdsrét@n their size when
immersed in a larger space.

* If chaotic processes there will be strange atbrac

» Chaotic processes are sensitive to initial coofit

At this point, there is no reliable test to certiye existence of chaos. A
working version for detecting nonlinear dynamicsl @haotic time series, would be to
apply several tests indicating the presence of <lzema avoid erroneous conclusions
that can be drawn from a single test (Georgescl2)20

In this paper are presented some of the commordd tessts to highlight the
chaotic behavior: Phase space reconstruction anbledding dimension, Fractal
dimension and Largest Lyapunov Exponent.

2. PHASE SPACE RECONSTRUCTION AND EMBEDDING DIMENSION

Phase space reconstruction and the graphical epegi®n of phase space may
reveal the existence of strange attractor whiclorie of the indicators of chaotic
behavior.



Phase space reconstruction is used also by oththiodwogies such us BDS
test and correlation dimension estimation.
We assume that information is available and repteskeas a discrete univariate

time series{xt}. It can be assumed that the time series is a onendional projection

of a source signal represented by a dynamic skteow of dimensiord, {xtd}. The

dynamic state vector consistsd¥ariables appropriate to its sideandt is the current
time in the time series sample.

Transition from one-dimensional time seriﬁa@} to thed-dimensional sample

coresponding from state space is done using Tak®mwem. Takens theorem is a
technique for reconstruction of an approximationhaf unknowrd-dimensional vector

{xtd} from state space by delaying and embedding therebd time series{xt}
(Takens, 1981). The reconstruction of phase spaggested by Takens has four steps:
» Suppose it's available a time series thbbservation{xl, xz,...xN} .
* s determined an appropriate time dekay
* Is determined the embedding dimensibn

« The one-dimensional time series is embeddedi-timensional space by
constructing the next vectors

Xtd = ()([,)([H,...,)(m(d_l)), t= 1,2,,N _T(d _1)
This approximate reconstruction is the state veobonposed by time delays of
the time series sampl{ext}, where t is the number of time delays amfis the

embedding dimension of the system. The accuratalegion ofd and r guarantees,
according to Embedding Theorem (Abarbanel, 1996}t the sequential order of the

reconstructed state vectoqd - xtdﬂ, is topologically equivalent to the state vector
generationx, — X,,, allowing {xtd} to represent unambiguously the original source of

the observed time seriéx[}.

2.1 Determining a reasonable time delay - Mutualfémmation
Accurate determination of the time delayensures that the coordinate vectors

{xtd} from time delayed space states are independertdi other. If is choosen a

small value forz, data from state space are clustered while chgasitoo high value
for 7 results in the disappearance of relations betweearts and attractor.

The determination of time delay can be done using mutual information
function (Fraser & Swinney, 1986).

The proposed criterion suggests that the delayetosét to the first local
minimum of mutual information function between ctioates.

The relationship with the help which is calculatdd mutual information

function between two coordinates{of}, for examplex® and x’,. is
P d X[d
P’ JPIx.
where P(x¢,x2. ) is the joint probability density function of and x¢,,.

MI (z) = log,



For two discrete variableX and Y the joint probability distribution is

P (% Y)-
The average mutual information of all coordinatesdlculated with:

P dX[d
AMI(z)= Y P4, x2 )l LI Ny
(z) &Z& (xt,xm)ogsztdpxir

Using the mutual information to determine the tideday is based on the idea
that a good choice for time delay shall be desigsedhat xtd provide maximum

information aboutx’, . . Fraser and Swinney states that the best valuiaéoime delay
is the smallest valuer for which AMI(r) is a local minimum and ensures the

independence between the coordinates of multidi'maabvector{xtd}.

This value of the time delay can be used for gregitiepresentation of phase
space. AMI (r) must be calculated using the joint probabilitytrdisition P(xtd,xtdﬂ)
for several values ofr. The mutual information can detect non-linear elations.
Graphic representations of the the mutual informatAMl(r) are reminiscent of

simple autocorrelation plots and can highlight &md of dependencies (Georgescu,
2012).
2.2 Determining the embedding dimension — False Nest Neighbours

The signal reconstruction in state space requirdémension to ensure that
there will be no overlap of the orbits of the dyneahsystem. The optimal dimension is
obtained by calculating the percentage of falseastaeighbors (FNN) between points
in state space.

The number of false nearest neighbors is calculagdg the reconstructed

state space vect0|>§d of different embedding dimensialh but with a constant number
of time delay r. Is generally accepted that when the percentagélsé nearest

neighbors drops to zero is reached the minimum feizembedding the original state
space system around the attractor, guaranteeiaghalsthe orbit is unique. Calculation

of false nearest neighbors requires measuring iftande R, , defined as the radius
between neighboring vectors in consecutive dimessio
The square of the euclidian distanig in dimensiord is:

2 d NN 2
R(t)=> (Xt+r(m—1) - Xt+r(m—1))

m=1
wheret is the current index of the discrete signgl)(and xtN
(NN) of x, .

In dimensiond+ 1 the square of euclidian distance is:
d+1
2 _ 2 2 2
Rd+l (t) - Z(Xtﬂ(m—l) - XtN+’;‘(m—1)) - Rd (t)+ (Xt+rd - XtT;ld) :
m=1
It is considered the criterion according to whicfalse nearest neighbor is any
neighbor for which the change in distance betweemtp in dimensiond and

dimensiond+1 exceeds a heuristic threshdR}, :

N is the nearest neighbour



J&f(t)— R() _ [ =] R, .
R(t) R, (t) °

Determination of false nearest neighbors dependsham is changed the
distance between vectors in state space in cormgecdimensions. If the distance
increases significantly with embeding dimensionrémeent, then vectors are false
neighbors, this means that points apparently diesmuse the projection are separate
by large distances when the embedding dimensidnci®ased. If the gap remains
below a certain threshold, the points in state saie real neighbors resulting from the
dynamics of the system. Embedding dimension thetirately represent the system is
that which eliminates the most false neighborsliieguin a system whose state space
trajectories are positioned according to systemadyos and not due to space
reconstruction (Georgescu, 2012).

2.3 Determining the embedding dimension — The Caasthod

To understand how to choose a good dimendifor embedding is helpful to
understand what is happening geometrically. As dize increases chaotic attractor
unfolds. When the attractor is completely unfoldedequential path from one point to
another will not self intersect. If the embeddingensiond is too small, some paths of
the projected attractor will self intersect.

Method of false nearest neighbors recognize tharevipaths of attractor self
intersect, two neighboring points are really distarthe embedding space of data series
(Georgescu, 2012).

Using this idea, Cao (1997) proposed a method fterchining a good
embedding dimension.

Let ( )
_Eld+1
E,(d)= £(a)
with
B 1 N Xtd+1_xtd+1,NNH
E(d)‘ N —dr tZ:l: thd _X[d,NNH
and
% =% = max|Xm =X

whereN is the length of initial series of dathrepresent the embedding dimension and
superscripfN identify the nearest neighbour of vector.d\'mcreasesEl(d) tends to

one. Embedding dimension will be given by the vatuéor which Ei(d) stops to
modify.
In (Cao, Mees & Judd, 1997) has been proposed itasimethod to determine
if the original data series is random.
Using a different metric
_E'(d+1)
=)=

where



1 N-dr

E*(d): N —dz Z

t=1

NN
Xivme ™ Ksme| »

A random series will hav£2(d) close to unity for all values af while a

chaotic series will havé, (d) less than one for small valueschf
2.4 Fractal dimension
Fractal dimension, also known as capacity dimenditausdorff dimension or
Hausdorff-Besicovitch dimension is a dimension thikdwed non integer values. The
objects for which the Hausdorff dimension is diffier from Lebesgue covering
dimension are called fractals. Hausdorff dimenira compact metric spac¢€is a

real numberd, ., such that the minimum number of open sets witmeier less than

or equal toe necessary to cover the spawée), is proportional withe = when

e - 0.
Explicitly,
d = lim

fractal —

e-0" 1 '

if the limit exists, whereN is the number of elements that form the finiteasing of
metric space and is a majorant for the diameters of sets that fogihe covering.

Mandelbrot estimated the Hausdorff dimension forrenfrontiers getting
results from 1 for borders which are similar witraght lines to 1.25 for the west coast
of Great Britain. Other results achieved by Mand#llfor the Hausdorff dimension of
some frontier borders were 1.15 for German bortld® for the border between Spain
and Portugal respectively 1.13 for Australian cdasgth (Mandelbrot, 1967).

There are several ways to define a fractal dimenbiat the most used is the
correlation dimension.

Let N be the number of elements of the time seddbe embedding dimension
and z the time delay. The embedding of time series skolmtions in @-dimensional
space is achieved by building vectors

X° = (% XeprreeeiXenr(ar))» £ = 22,0, M |, whereM =N —z(d -1).

Considering spheres of radiusaround the points of embedding space, the
average number of points contained in spherespuflitbounting their centers is given

by
)= g o2t b <))

where x is the center of the sphere ahl{x) is the Heaviside function,

0 dacax<0
H (x) = :
1 dacax=0
Correlation dimension suppose thatrespproaches zero, the relationship after
thatC(r) changes is

c(r)= lim kr Pe



Explaining D, from the previous relation we obtain

. InClr
D, =lim M)
-0 Inr
Because the data set is not continuowsan not get too close to 0 because the

spheres would not contain other points besidescgento remove this shortcoming, in
practice, we plotin C(r) versusinr and identify the apparently linear portion of the

graph. The slope of this portion approximates threetation dimensiorD.. . If D is
integer, then the attractor is a usuall geometojea, a point forD. =0, a curve in

case ofD. =1 or a surface whe. =2. If D, is not integer, then the attractor is

strange and the system has a chaotic behavior ¢ésar, 2012).
2.5 Information dimension
The information function is defined by the formula

| =-ge<e>me<e>

where R(s) is a natural measure or the probability that teenenti to be populated so
that

N
> R(e)=1.
i=1
Then, the information dimension is given by
N
d __”m'_:”mzw_

inf tion —
information c~0' lNg  co0' o Ine

If each element is visited with equal probabilit?/(e) is independent afand

> R()=NER()=1

Then

and

1, 1
. N N _go InNT . InN
dinformation = ’“m z— m =—lim—=d

-0" Ineg ¢-0" Ing
whered;.,., is the fractal dimension.
The three dimensions presented satisfy the indguali
d < Qinformaion < d
whered,,, is the fractal dimension ard ... iS the correlation dimension.

2.6 The largest Lyapunov exponent
One of the most used techniques for determining ptesence of chaotic
behavior is the largest Lyapunov exponent which suezs the divergence of
trajectories with neighboring origins. As the systeevolves distance between
trajectories vary in turn.

fractal

corelation fractal



Consider a model and two neighboring poi|7q£0), XQ(O) at the timet=0,

starting points for two trajectories in phase spddenote the distance between these
two pointsd(0). At the timet, that is after moving the two points along thgeirtories,
distance between points is measured again andestiaot

Using a different terminology, we can say that wel@d a flow ®, to both

points and after the time peribeve measured the distance between the two pait}s,
Is monitored the evolution of the relationship betw the two distances

@:eﬂ
dt '

Whent tends to infinity, y converges to a value. The value of this limit is

Lyapunov characteristic exponent.
If x>0, it is said that the two orbits, initially closdiverge exponentially

under the action of the flow. It also says that tlyapunov characteristic exponent
measures the rate of divergence of the system (@sou, 2012).

Lyapunov exponent measures the rate of convergenckvergence in each
dimension. A chaotic system will present the triigc divergence at least in a
dimension.

To determine the largest Lyapunov exponent is tise@xpression

1 32 (|s{t+at)-s(t+At)
Ay = —— >IN .
NAt & Is{t)-s(t)

where s(t) and s'(t) represent close but distinct points. A$ grow, the Lyapunov
exponent theoretically converges to its true value.

In practice, due to finite and noises data, thgdst Lyapunov exponent can be
determined only approximately in a range of values

After calculating the Lyapunov maximum exponentlor determination of its
approximations we make assumptions about the nafuhe system:

e A<0 The system generates a stable fixed point or lalestaeriodic orbit.
Negative values of Lyapunov exponent are charatieto non-conservative or
dissipative systems. The higher the absolute vafube Lyapunov exponent
the more stable is the system. A fixed point supets will have a Lyapunov
exponent that tends to minus infinity.

A =0 A system with such an exponent is conservative.

 A>0 Inthis case the orbits are unstable and cha@timts initially very close
diverge to arbitrary values over time. A graphiagresentation is similar to a
cloud of points without a distinct path

3. CONCLUSIONS

In economy the majority of historical data are klae as time series.
Detecting chaotic nature of the processes that pawéded such data is not an easy
task because there is still no way to specify tletire existence of chaos. Another
constraint is the relatively small number of obs#éions that allows us only to issue
certain assumptions about the phenomenon studiktbagetermine estimates of chaos
indicators such as largest Lyapunov exponent.



Thus in this uncertainty we can only try to highligas many aspects that allow

us cataloging process as chaotic one.

Due to these weaknesses and others such as djffatistinguishing between

deterministic chaos and noise and limited predistito just a few steps, economists
have lost the enthusiasm displayed upon discovieckians theory.

However, there are ideals such as guiding the engneith small impulses

applied at appropriate times, to which tend thé®nis economics and that could be
possible using models based on chaos theory

prediction horizon.
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