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Abstract: Chaos Theory aims to find the underlying order from apparently 
random data. Every economic process produce one or many time series. 
Determining if the process is or not chaotic may supply valuable 
information about how to deal with that process. There is no single test 
that identify chaos, so to say that a system is chaotic is better to perform 
more tests. 
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1. INTRODUCTION  

Chaotic systems are in fact complex deterministic systems with a large number 
of variables that influence the evolution of the process making it impossible for humans 
to simulate it and therefore making them seems unpredictable. This, also, makes it 
impossible to determine the initial state of the system knowing just the final state. 

Chaos is met in: solar system dynamics, evolution of populations, the weather, 
chemical reactions, etc. Also, the economy can be seen as a chaotic system, a factor that 
brings a huge number of variables is direct involvement of people. The chaos from 
complex systems is known as chaos deterministic. 

Chaotic behavior is indicated by the following features:  
• Chaotic processes are nonlinear processes.  
• Chaotic processes are deterministic processes that retain their size when 

immersed in a larger space.  
• If chaotic processes there will be strange attractors.  
• Chaotic processes are sensitive to initial conditions.  
At this point, there is no reliable test to certify the existence of chaos. A 

working version for detecting nonlinear dynamics and chaotic time series, would be to 
apply several tests indicating the presence of chaos and avoid erroneous conclusions 
that can be drawn from a single test (Georgescu, 2012) 

In this paper are presented some of the commonly used tests to highlight the 
chaotic behavior: Phase space reconstruction and embedding dimension, Fractal 
dimension and Largest Lyapunov Exponent. 

2. PHASE SPACE RECONSTRUCTION AND EMBEDDING DIMENSION 

Phase space reconstruction and the graphical representation of phase space may 
reveal the existence of strange attractor which is one of the indicators of chaotic 
behavior. 



Phase space reconstruction is used also by other methodologies such us BDS 
test and correlation dimension estimation. 

We assume that information is available and represented as a discrete univariate 
time series { }tx . It can be assumed that the time series is a one-dimensional projection 

of a source signal represented by a dynamic state vector of dimension d, { }d
tx . The 

dynamic state vector consists of d variables appropriate to its size d and t is the current 
time in the time series sample. 

Transition from one-dimensional time series { }tx  to the d-dimensional sample 

coresponding from state space is done using Takens theorem. Takens theorem is a 
technique for reconstruction of an approximation of the unknown d-dimensional vector 

{ }d
tx  from state space by delaying and embedding the observed time series { }tx  

(Takens, 1981). The reconstruction of phase space suggested by Takens has four steps: 
• Suppose it's available a time series with N observations { }Nxxx ,..., 21 . 

• Is determined an appropriate time delay τ . 
• Is determined the embedding dimension d. 
• The one-dimensional time series is embedded in d-dimensional space by 

constructing the next vectors  

( )( )1,...,, −++= dτtτtt
d
t xxxx , ( )1,...,2,1 −−= dτNt . 

This approximate reconstruction is the state vector composed by time delays of 
the time series sample { }tx , where τ  is the number of time delays and d is the 

embedding dimension of the system. The accurate calculation of d and τ  guarantees, 
according to Embedding Theorem (Abarbanel, 1996), that the sequential order of the 

reconstructed state vector d
t

d
t xx 1+→ , is topologically equivalent to the state vector 

generation 1+→ tt xx , allowing { }d
tx  to represent unambiguously the original source of 

the observed time series { }tx . 

2.1 Determining a reasonable time delay - Mutual Information  
Accurate determination of the time delay τ  ensures that the coordinate vectors 

{ }d
tx  from time delayed space states are independent of each other. If is choosen a 

small value for τ , data from state space are clustered while choosing a too high value 
for τ  results in the disappearance of relations between points and attractor. 

The determination of time delay τ  can be done using mutual information 
function (Fraser & Swinney, 1986). 

The proposed criterion suggests that the delay to be set to the first local 
minimum of mutual information function between coordinates. 

The relationship with the help which is calculated the mutual information 

function between two coordinates of { }d
tx , for example d

tx  and d
τtx +  is 
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For two discrete variables X and Y the joint probability distribution is 
( )yxPXY , . 

The average mutual information of all coordinates is calculated with: 
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Using the mutual information to determine the time delay is based on the idea 

that a good choice for time delay shall be designed so that d
tx  provide maximum 

information about d
τtx + . Fraser and Swinney states that the best value for the time delay 

is the smallest value τ  for which ( )τAMI  is a local minimum and ensures the 

independence between the coordinates of multidimensional vector { }d
tx . 

This value of the time delay can be used for graphical representation of phase 

space. ( )τAMI  must be calculated using the joint probability distribution ( )d
τt

d
t xxP +,  

for several values of τ . The mutual information can detect non-linear correlations. 
Graphic representations of the the mutual information ( )τAMI  are reminiscent of 
simple autocorrelation plots and can highlight any kind of dependencies (Georgescu, 
2012). 

2.2 Determining the embedding dimension – False Nearest Neighbours  
The signal reconstruction in state space requires a dimension to ensure that 

there will be no overlap of the orbits of the dynamical system. The optimal dimension is 
obtained by calculating the percentage of false nearest neighbors (FNN) between points 
in state space.  

The number of false nearest neighbors is calculated using the reconstructed 

state space vectors dtx  of different embedding dimension d, but with a constant number 

of time delay τ . Is generally accepted that when the percentage of false nearest 
neighbors drops to zero is reached the minimum size for embedding the original state 
space system around the attractor, guaranteeing also that the orbit is unique. Calculation 
of false nearest neighbors requires measuring the distance dR , defined as the radius 

between neighboring vectors in consecutive dimensions. 
The square of the euclidian distance dR  in dimension d is: 
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where t is the current index of the discrete signal (tx ) and NN
tx  is the nearest neighbour 

(NN) of tx . 

In dimension d+1 the square of euclidian distance is: 
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It is considered the criterion according to which a false nearest neighbor is any 
neighbor for which the change in distance between points in dimension d and 
dimension d+1 exceeds a heuristic threshold tolR : 
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Determination of false nearest neighbors depends on how is changed the 
distance between vectors in state space in consecutive dimensions. If the distance 
increases significantly with embeding dimension increment, then vectors are false 
neighbors, this means that points apparently close because the projection are separate 
by large distances when the embedding dimension is increased. If the gap remains 
below a certain threshold, the points in state space are real neighbors resulting from the 
dynamics of the system. Embedding dimension that accurately represent the system is 
that which eliminates the most false neighbors resulting in a system whose state space 
trajectories are positioned according to system dynamics and not due to space 
reconstruction (Georgescu, 2012). 

2.3 Determining the embedding dimension – The Cao’s method 
To understand how to choose a good dimension d for embedding is helpful to 

understand what is happening geometrically. As the size increases chaotic attractor 
unfolds. When the attractor is completely unfolded, a sequential path from one point to 
another will not self intersect. If the embedding dimension d is too small, some paths of 
the projected attractor will self intersect. 

Method of false nearest neighbors recognize that where paths of attractor self 
intersect, two neighboring points are really distant in the embedding space of data series 
(Georgescu, 2012). 

Using this idea, Cao (1997) proposed a method for determining a good 
embedding dimension. 

Let 
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where N is the length of initial series of data, d represent the embedding dimension and 
superscript NN identify the nearest neighbour of vector. As d increases, ( )dE1  tends to 

one. Embedding dimension will be given by the value d for which ( )dE1  stops to 
modify.  

In (Cao, Mees & Judd, 1997) has been proposed a similar method to determine 
if the original data series is random. 

Using a different metric 
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A random series will have ( )dE2  close to unity for all values of d while a 

chaotic series will have ( )dE2  less than one for small values of d. 
2.4 Fractal dimension  

Fractal dimension, also known as capacity dimension, Hausdorff dimension or 
Hausdorff-Besicovitch dimension is a dimension that allowed non integer values. The 
objects for which the Hausdorff dimension is different from Lebesgue covering 
dimension are called fractals. Hausdorff dimension of a compact metric space X is a 
real number fractald  such that the minimum number of open sets with diameter less than 

or equal to ε  necessary to cover the space, ( )εn , is proportional with fractald
ε

−
when 

0→ε . 
Explicitly,  

ε

N
d

ε 1
ln

ln
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0
fractal +→

≡ , 

if the limit exists, where N is the number of elements that form the finite covering of 
metric space and ε  is a majorant for the diameters of sets that forming the covering. 

Mandelbrot estimated the Hausdorff dimension for more frontiers getting 
results from 1 for borders which are similar with straight lines to 1.25 for the west coast 
of Great Britain. Other results achieved by Mandelbrot for the Hausdorff dimension of 
some frontier borders were 1.15 for German border, 1.14 for the border between Spain 
and Portugal respectively 1.13 for Australian coast length (Mandelbrot, 1967). 

There are several ways to define a fractal dimension but the most used is the 
correlation dimension. 

Let N be the number of elements of the time series, d the embedding dimension 
and τ  the time delay. The embedding of time series of observations in a d-dimensional 
space is achieved by building vectors 

( )( )1,...,, −++= dτtτtt
d
t xxxx , Mt ,...,2,1= , where ( )1−−= dτNM . 

Considering spheres of radius r around the points of embedding space, the 
average number of points contained in spheres, without counting their centers is given 
by 
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where d
tx  is the center of the sphere and ( )xH  is the Heaviside function, 
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Correlation dimension suppose that as r approaches zero, the relationship after 
that ( )rC  changes is 

( ) CD

r
krrC

0
lim

→
= . 



Explaining CD  from the previous relation we obtain 

( )
r
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D

r
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Because the data set is not continuous, r can not get too close to 0 because the 
spheres would not contain other points besides centers. To remove this shortcoming, in 
practice, we plot ( )rCln  versus rln  and identify the apparently linear portion of the 

graph. The slope of this portion approximates the correlation dimension CD . If CD  is 

integer, then the attractor is a usuall geometric object, a point for 0=CD , a curve in 

case of 1=CD  or a surface when 2=CD . If CD  is not integer, then the attractor is 

strange and the system has a chaotic behavior (Georgescu, 2012). 
2.5 Information dimension  

The information function is defined by the formula 
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If each element is visited with equal probability, ( )εPi  is independent of i and 
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where fractald  is the fractal dimension. 

The three dimensions presented satisfy the inequality 

fractalninformatiocorelation ddd ≤≤  

where fractald  is the fractal dimension and corelationd  is the correlation dimension. 

2.6 The largest Lyapunov exponent 
One of the most used techniques for determining the presence of chaotic 

behavior is the largest Lyapunov exponent which measures the divergence of 
trajectories with neighboring origins. As the system evolves distance between 
trajectories vary in turn. 



 

Consider a model and two neighboring points ( )01x , ( )02x  at the time t=0, 
starting points for two trajectories in phase space. Denote the distance between these 
two points d(0). At the time t, that is after moving the two points along the trajectories, 
distance between points is measured again and denoted d(t). 

Using a different terminology, we can say that we applied a flow tΦ  to both 

points and after the time period t we measured the distance between the two points, d(t). 
Is monitored the evolution of the relationship between the two distances 

( )
( )

tχe
td

d =0
.  

When t tends to infinity, χ  converges to a value. The value of this limit is 
Lyapunov characteristic exponent. 

If 0>χ , it is said that the two orbits, initially close, diverge exponentially 
under the action of the flow. It also says that the Lyapunov characteristic exponent 
measures the rate of divergence of the system (Georgescu, 2012). 

Lyapunov exponent measures the rate of convergence or divergence in each 
dimension. A chaotic system will present the trajectory divergence at least in a 
dimension. 

To determine the largest Lyapunov exponent is used the expression 
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where ( )ts  and ( )ts'  represent close but distinct points. As t∆  grow, the Lyapunov 
exponent theoretically converges to its true value. 

In practice, due to finite and noises data, the largest Lyapunov exponent can be 
determined only approximately in a range of values 

After calculating the Lyapunov maximum exponent or the determination of its 
approximations we make assumptions about the nature of the system: 

• 0<λ  The system generates a stable fixed point or a stable periodic orbit. 
Negative values of Lyapunov exponent are characteristic to non-conservative or 
dissipative systems. The higher the absolute value of the Lyapunov exponent 
the more stable is the system. A fixed point superstable will have a Lyapunov 
exponent that tends to minus infinity. 

• 0=λ  A system with such an exponent is conservative. 
• 0>λ  In this case the orbits are unstable and chaotic. Points initially very close 

diverge to arbitrary values over time. A graphical representation is similar to a 
cloud of points without a distinct path 

3. CONCLUSIONS  

In economy the majority of historical data are available as time series. 
Detecting chaotic nature of the processes that have provided such data is not an easy 
task because there is still no way to specify clearly the existence of chaos. Another 
constraint is the relatively small number of observations that allows us only to issue 
certain assumptions about the phenomenon studied and to determine estimates of chaos 
indicators such as largest Lyapunov exponent. 



Thus in this uncertainty we can only try to highlight as many aspects that allow 
us cataloging process as chaotic one. 

Due to these weaknesses and others such as difficulty distinguishing between 
deterministic chaos and noise and limited predictions to just a few steps, economists 
have lost the enthusiasm displayed upon discovery of chaos theory. 

However, there are ideals such as guiding the economy with small impulses 
applied at appropriate times, to which tend theorists in economics and that could be 
possible using models based on chaos theory 

Determination of chaotic behavior is also important to establish a correct 
prediction horizon. 
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