
 

 A STOCHASTIC MODELING FOR THE UNSTABLE FINANCIAL MARKETS  

 

Assoc. Prof. Romeo Negrea  Ph. D  
Politehnica University of Timisoara 
Department of Mathematics 
Timisoara, Romania 
Assoc. Prof. Ciprian Preda Ph. D  
West University of Timisoara 
Faculty of Economics and Business Administration 
Timisoara, Romania 
Prof. Ioan Lala Popa 
West University of Timisoara 
Faculty of Economics and Business Administration 
Timisoara, Romania 

Abstract: : An alternative approach to stochastic calculus for a financial 
model on some imperfect and unstable financial markets is proposed. 
Following the most recent instrument for the financial modeling, we study 
the solvability of a class of forward-backward stochastic differential 
equations (FBSDE) in the framework of McShane stochastic calculus, in 
some general hypothesis on the initial value and the coefficient functions. 
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1. INTRODUCTION  
Continuous development of the finance assets yields more adequate 

mathematical models which are supposed be good enough to describe the complex 
behavior of the financial market. More sophisticated models are available on some 
restrictive financial hypothesis, but this hypothesis are not satisfied on some transition 
financial markets as in East Europe, where are more unpublished information, over 
quoted initial values and government financial interventions. Moreover, the evolution 
on these markets is characterized by some "smoothed" life-time and some very "noises" 
life-time and this time periods are hard unexpected. For these reasons, we propose an 
approach somehow, more general as there for a free financial market. 

The classic stochastic approach for the financial models has used the 
framework developed by Ito to deal with the resulting stochastic differential equations 
(SDE), based on the idea that a Wiener stochastic process is used for the external 
disturbances. Then, more authors supposed an semimartingale process for the external 
noises which make very complicated stochastic calculus. On the other side, 
E.J.McShane developed a more simple integration calculus using the Ito-belated 
integrals. In 1979, Ph.Protter showed that the McShane calculus is equivalent with the 



integration with respect to a semimartingale process. Somehow, this situation is similar 
with the fact that a Riemann-Stieltjes integral can be considered as a Lebesque integral 
in some adequate framework, but practically we prefer to use the Riemann integration 
calculus as to be more simple. 

It's known that the stochastic approach for the financial modeling is started with 
the famous papers of Merton and Black and Scholes in the 70's. The principal 
instrument for the stochastic modeling is the backward stochastic differential equations 
(BSDE) or forward-backward stochastic differential equations (FBSDE). This leads us 
to consider a forward-backward McShane stochastic differential equations. 

2. PRELIMINARY RESULTS 
In first year of 70's, E.J.McShane introduced so called belated integrals and 

stochastic differentials and differential systems which enjoying the following three 
properties: inclusiveness, consistency and stability. McShane's calculus had proved to 
very valuable in modeling and is finding applications in physics, engineering and 
economics. 

A stochastic integral equations by McShane type is one of the following form: 
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where the integrals are belated or McShane integrals. 
On the above equation, we recall some specifically results of the McShane 

stochastic calculus. Let ( , , )F PΩ  be a complete probability space and let 
{ , 0 }tF t a≤ ≤  be a family of complete σ − subalgebras of F  such that 0 s t a≤ ≤ ≤  
then s tF F⊆ . Every process denoted by z  with diferent affixes will be a real valued 
second order stochastic process adapted to { , 0 }tF t a≤ ≤  (i.e. ( )z t  is tF − measurable 
for every [0, ]t a∈ ) and  

      | [( ( ) ( )) / ] | ( )m
sE z t z s F K t s− ≤ −  

a.s., whenever 0 , = 1,2,4,s t a m≤ ≤ ≤  for a positive constant K  having a.s. 
continuous sample functions (and we say that the process satisfies a K -condition). 

It is known (see [7]) that if 2:[0, ]f a L→  is a measurable process adapted to 
the tF  and if || ( ) ||t f t→  is Lebesgue integrable on [0, ]a , then if 1z  and 2z  satisfy a 

K -condition, the McShane integrals 10
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the following estimates are true  
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 where 
1 1
2 2= 2 .C Ka K+  

An important class of McShane stochastic differential equations is the class of 
equation which have a canonical extension or a canonical form (as in McShane a), i.e. 
the equation (1) with the special case when 

 

 1

=1

( , ( ))1( , ( )) = ( , ( )), = ( , , ).
2

n
j n

jk ki
i

g t X t
h t X t g t X t X X X

X
∂

⋅
∂∑ … (4) 

 
Among to this forward equations, in the optimal stochastic control appear some 

backward differential equations as the following 
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 where { ( ), 0 1}jz t t≤ ≤ , = 1,2, ,j r…  is a stochastic process defined on the 

probability space ( , , )F PΩ  with the natural filtration { , 0 1}tF t≤ ≤  and 1Y  is a given 

1F -measurable random variable such that 2
1| | <E Y ∞ . Moreover, f  is a mapping 

from [0,1] R RΩ× × ×  to R  which is assumed to be \P B B B⊗ ⊗ -measurable, 
where P  is the σ -algebra of tF -progressively measurable subsets of [0,1]Ω× . Also 
g  is a mapping from [0,1] RΩ× ×  to R  which is assumed to be \P B B× -
measurable. 

We remark that in the case of backward stochastic differential equations by the 
McShane type we have a canonical extension when replace the functions jkh  as above. 

In this context we consider the following forward-backward stochastic 
differential equation by the McShane type 
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with , , , : (0,1)a b f g R R R RΩ× × × × → , :h R R+ →  and the following hypotheses 
(which extend the result of Athanassov 1990 [1] for ordinary differential equations and 
includes other results on FBSDE): 



 i) , ,a b f  and g  is P B B B⊗ ⊗ ⊗  measurable functions; 
 ii) 2( ,0,0,0) ((0,1), )M Rϕ ⋅ ∈ , where ϕ  is any functions , ,a b f  or g  

( 2 (0,1)M  is the set of all stochastic process which are square McShane integrable on 
[0,1] and tF -measurable for 0 1t≤ ≤ ); 

 iii) there exists ( )u t  a continuous, positive and derivable function on 0 < 1t ≤  
with (0) = 0u , having nonnegative derivative ( ) ([0,1])u t L′ ∈ , with 

( ) , 0u t t +′ →∞ →  such that  
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for all 1 2 1 2 1 2, , , , , , 0 1x x y y z z R t∈ ≤ ≤ , positive constant K  and ϕ  is any function 
, ,a b f  or g ; 

 iv) with the same functions ( )u t  as above,  
 2 2 2 2 2| ( , , ) | ( ) min(1 | | ,1 | | ,1 | | ), | ( ) | (1 | | ),t x y u t x y z and h y yϕ ′≤ + + + ≤ + (8) 

and 0X  is a finite random variable and 1Y  is given 1F -measurable random variable 

such that 2
1| | <E Y ∞ .  

A similar forward-backward equation can be obtain using the canonical form.. 

3. MAIN RESULTS 
In this section, we prove that the stochastic (forward-backward) differential 

system has a solution on some interval [ ,1]δ  for any positive constant δ  in some 
general hypotheses of the coefficient functions , ,a b f  and g  as above. This case, with 
some discontinuity in the initial time moment = 0t  is is in according situation of the 
transition financial markets, where the underlying assets (which is modeling with a 
forward stochastic differential equation) is over-quoted.  

3..1 Existence and uniqueness  
We have the following theorem: 
 
 Theorem 1.  Let be , , ,a b f g  and h  satisfying the hypotheses ) )i iv−  

and 2
1 1( , , , )Y L F P R∈ Ω , then there exists a triple ( , , )X Y Z ∈ 

2 2 2( ((0,1) ((0,1)) ((0,1)), )M M M R∈ × ×  which satisfy the system (6) in the 
canonical form, for 0 1t≤ ≤  
 
Proof:   In a similar way as [14]. 
 

 



 
3.2.  Option pricing  

The valuation of contingent claims is proeminent in the theory of modern 
finances. Typical claims such as call and put options are significant not only in theory 
but in real security markets. 

The option pricing model developed by Black and Scholes [2], formalized and 
extended in the same year by Merton [13], enjoys great popularity. 

We consider a Black-Scholes market = ( , , )BSM S B φ  (see [10],[14]) where:  
 i) = { }tS S , 0[ , ]t t T∈ , 0 0t ≥  is the price process of a stock and we suppose 

that it satisfies the following differential stochastic equation by McShane type:  
  2= ( , ) ( , ) ( , )( ) ,t t t t t tdS t S dt t S dz t S dzμ σ ρ+ + (9) 
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with 1 < < 0b− , 0 < 1β ≤ , c R∈ ;  
ii) = { }tB B , 0[ , ]t t T∈  is the price process of a bond and we consider that it 

satisfies the differential stochastic equation by McShane type:  
  2= ( ) ;t tdB rdt l dz+ (11) 
  
 iii) φ  is a trading strategy (see [14]) i.e. a pair 1 2= ( , )φ φ φ  of progressively 

measurable stochastic processes on the underlying probability space ( , , )F PΩ .  
It is known (see [14]) that a trading strategy φ  over the time interval 0[ , ]t T  is 

self-financing if its wealth proces ( )V φ , which is set equal  
  1 2

0( ) = , [ , ]t t t t tV S B t t Tφ φ φ+ ∀ ∈  
satisfies the following condition  

1 2
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where the integrals are understood in the McShane sense.  
 
Remark. We observe that the coefficient functions of the stochastic differential 

equation (5) satisfy the conditions of our Theorem, for  
   

  2

1( ) = , (0, ].bu t t T
t

∈  

We consider a European call option written on a stock S , with expiry date T  
and strike price K . Let the function 0: [ , ]c R t T R+ × →  ( 0 0t ≥ ) given by the formula  

  ( ) ( )( , ) = ( ( ) ) ,B t s C tc s t D A t s K e
α +− (12) 

 where , , :[0, ]A B C T R→  are some continuous functions, D  is a positive 
constant and = 2α β− .  

In [Negrea 2003b, [11]] is proved the following results (using classical method of 
PDEs) 



 
 Theorem 2. The arbitrage price at time 0[ , ]t t T∈  of the European call option 

with expiry date T  and strike price K  in the Black-Scholes market is given by the 
formula  

  0= ( , ), [ , ],t tC c S T t t t T− ∀ ∈ (13) 
where the function 0: [ , ]c R t T R+ × →  is given above and 0 0t ≥ .  
 
           Remark. It is easy to check that the formula (14) is true using the FBSDEs 
method (given in Theorem 1.). 
 

4. SOME APPLICATIONS AND EXAMPLES 
We consider that we have an European call option on a convertible currency 

(such type of derivative assets are transactioned on the Sibiu Monetary-Financial and 
Commodities Exchange). More specifically we have an option on the report EUR/RON 
(Euro/Romanian Leu) from 01.10.2009 to 30.04.2010. The behavour of this process is 
given in the graph from bellow and we can sea more very smothed part of this simple 
path and this explain a non-random noise on the market (in fact these are the results of 
some financial policies of Romanian government).  
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Figure no. 1  

 
We compute the price with our formula and we obtain 0( , ) = 0.768C t T  which is 

less than the price of the option at the Sibiu Monetary-Financial and Commodities 
Exchange (compute with classical formula of Black-Scholes), but our price is more 
closed to reality.  



 
 

 

5. CONCLUSIONS  
.We proposed a model for the behavior of the financial asstes on some unstable 

finacila maerkets. The evolution on these markets is characterized by some "smoothed" 
life-time and some very "noises" life-time and this time periods are hard unexpected. 
For these reasons, we propose an approach somehow, more general as there for a free 
financial market. Out study is just at the begining, but, as inthe example form above, the 
obtained results sustain our modeling for applications on the Romanian finacial market 
where the noise market is not a classical Gaussian noise, there exists more others 
random or non-random perturbations. 
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