
Implementing the Duty Trip Support Application

Grzegorz Frąckowiak*, Sang Keun Rhee**,***, Marcin Paprzycki*, Michał Szymczak*, Maria
Ganzha*,****, and Myon Woong Park**,***

* Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
E-Mail: marcin.paprzycki@ibspan.waw.pl

** Korea Institute of Science and Technology, Seoul, Korea
*** University of Science and Technology, Korea

****University of Gdańsk, Gdańsk, Poland
E-Mail: greyrhee@kist.re.kr

Abstract: We are in the process of developing an agent and ontology-based Duty Trip Support
application. The goal of this paper is to consider issues arising when implementing such a system. In addition to
the description of our current implementation, which is also critically analyzed, other possible approaches are
considered as well.

Keywords: software agents, agent systems, ontologies, transport objects, agent-non-agent integration.

1. INTRODUCTION

Our recent work concerns development of an ontology and agent-based system supporting workers in
a virtual organization. Thus far, focus of our work was on the conceptualization of the system [1] and
its various functionalities [2], as well as design of a novel ontological matchmaking algorithm [3, 4,
5]. Treating an ontology as an ordered graph, our algorithm utilizes multi-pathway approach to
establishing semantic relevance of ontologically demarcated resources. For instance, in [3] we present
how the proposed algorithm allows establishing persons (and/or conferences) that are of potential
interest to a researcher who travels from East Asia to Europe during a so-called Duty Trip. The aim of
this paper is to discuss in some detail how the system is being implemented. In addition to the
presentation of our current approach, we also consider other possibilities. Finally, we try to summarize
most important observations made during system implementation.

To this effect we proceed as follows. We start by introducing the Duty Trip concept and presenting a
sample scenario of how the system works. In the next section we discuss the implementation of core
functionalities of the system. We follow by presenting other important functionalities that have to be
included in the application. We complete the paper with lessons learned about implementing systems
combining agents and ontologies.

2. DUTY TRIP SUPPORT

Concept of the Duty Trip (DT) is well-established in Korea, where sending a researcher to a
conference (or any other business trip) often involves a long-distance (e.g trans-Pacific) and very
expensive travel. This being the case it has been established that it makes an economic sense to
combine multiple activities with a single airline travel. Therefore, in the case of a faculty member
travelling to a conference, it is natural to combine such a trip with visits to near-by universities and/or
research institutes. The aim of our work is to provide support for workers involved in a Duty Trip.
Such support includes not only suggesting persons or conferences, but also travel-related entities, such
as hotels or restaurants. The main assumption behind our system is that it will be based on utilization
of ontologies and software agents. Let us now briefly describe the proposed system, while more details
can be found in [1-11].

Let us start from ontologies and their utilization (more details concerning this topic can be found in [3,
4, 5, 7, 8]). The main assumption behind our system is that every “actor” appearing in it is uniformly

240

treated as a resource. This concerns persons, institutions, computers, books, software, as well as
“entities of interest during a trip” (e.g. restaurants, or hotels), etc. Furthermore, each resource is an
instance of an ontology used in the system, and has its own ontological resource profile. As a result, a
very large class of operations performed in the system can be conceptualized as ontological
matchmaking. In particular, this concerns all functionalities that are based on (i) establishing
ontological closeness (relevance) of resources, which allows, (ii) on the basis of the strength of the
relevance, to decide if selected resources should be “recommended” to “each-other.” For instance, the
proposed matchmaking algorithm can be used to judge if a grant announcement is relevant to a
researcher and should be forwarded to her, or not ([4, 5]).

Let us now present a sample scenario of how the system works. Before proceeding, we have to make a
few assumptions. First, we assume that an organization will utilize (internally) a single ontology and
thus there is no need for matching between ontologies, but only for establishing relevance between
resources within that ontology. Second, within the ontology, two levels of importance of relations are
distinguished: (i) resulting from the model (i.e. representing the designer-perceived importance of
relations), and (ii) representing individual “preferences” (e.g. personally perceived level of expertise in
a given research field). Finally, let us assume that the system is already in operation for some time; e.g.
in an Advanced Research Institute of the Korean Academy of Sciences (ARIKAS). This means that
workers of ARIKAS have accounts in the system and have been using it to plan, approve, and report
their Duty Trips. This assumption is necessary to claim that the system contains substantial enough
body of knowledge about resources (e.g. attended conferences, visited people, used hotels, etc.).
Recall that “knowledge items” are stored as instances of ontologically demarcated resource profiles.

A. Duty Trip Scenario

Let us now consider Prof. Lee from ARIKAS, whose research interests are software engineering,
agent systems, and ontologies. The Personal Agent (PA) of Prof. Lee found in the system information
about a workshop, which will take place in Paris, France on October 18-20, 2010. Resource profile of
this workshop was demarcated as concerning software agents, agent systems, and medical informatics.
The PA used a matchmaking service and established that this event could be of interest to Prof. Lee
and recommended it. Following the ARIKAS procedures (see the sequence diagram presented in [2] as
Figure 2, and the discussion that concerns its content), Prof. Lee uses his PA to help him prepare a
Duty Trip Request (DT Request). After filling the web-form with initial data concerning his trip, he
sends it to the PA, which inquires if he would like to consider extending his trip and include additional
activities. Since Prof. Lee has some extra time after the conference, he confirms. As a result the system
is searched for recommendations (see, [7] for more details). In the first step the geospatial filtering is
used to select resources stored in the system that are located within a specific distance from the target.
Here, let us assume that cities within 300 km from Paris are extracted (300 kilometers is a distance
that usually can be travelled to complete a one-day visit). Note that, at this stage of development of the
system, only resources already stored in it can be used to provide suggestions. In other words, if
someone in the ARIKAS interacted with Prof. Lacroix from Ghent, Belgium, then the resource profile
of this person will be in the system, and thus Ghent could be selected as a result of a geospatial query.
However, if no resource located in Compiegne, France is stored in the system, then Compiegne cannot
be selected. This limitation of our system may be worthy dealing with in the future (e.g. by adding
ability to search the Internet for additional resources). As a result of geospatial processing, the
following cities (and people) located within 300 km from Paris could have been selected: Ghent and
Prof. Lacroix from the University of Ghent, Lille and Prof. Olejnik from the EPFL, and Reims and
Prof. Colombard from the University of Reims. In the second step of the process, professional
resource profiles of the three (geospatially) selected researchers are matched against the professional
resource profile of Prof. Lee (for a detailed description of the matching procedure, see [3]). As a result
it could be established that research interests of Prof. Lacroix are too distant from those of Prof. Lee.
However, interests of Prof. Olejnik and Prof. Colombard are close enough (Prof. Olejnik's interests
match very closely with ontologies, while Prof. Colombard matches to some extent all three of
research interests of Prof. Lee). Therefore, as a result of ontological matchmaking, Prof. Olejnik and
Prof. Colombard, and information about their research interests, are forwarded to Prof. Lee (who will
also be able to browse their profiles, as well as past Duty Trip Reports – from other researchers of
ARIKAS mentioning them – stored in the system). Based on provided data, Prof. Lee includes visits

241

to those two researchers (on the 21st and 22nd of October, 2010) into his DT Request document.
Obviously, this step may involve an earlier visit approaval from the two potential hosts.

When the DT Request is completed, information about it is sent by Prof. Lee's PA to the PA of Prof.
Park, Director of his Research Laboratory within ARIKAS. Knowledge on how to deal with the
complete DT Request is a part of the ontology of the organization [8]. Prof. Park analyses the request,
and may utilize functionalities available in his PA to fetch additional resources (e.g. the complete list
of recent trips undertaken by Prof. Lee). When the final decision is reached, the status of the DT
Request is changed into approved (or rejected) and this fact can be checked by the PA of Prof. Lee,
which then informs him about the outcome of his application.

Let us now assume that the DT Request was approved and that Prof. Lee has completed his trip. Here,
according to the ARIKAS procedures, Prof. Lee has to file a Duty Trip Report (DT Report). In this part
of the process, the system supports users in two ways. First, it helps collecting information necessary
to file the DT Report. Second, extracts from the DT Report data to be stored in the system. Let us
assume that during his visit in Paris, Prof. Lee met Prof. Durant, from Dijon, France, who is a
specialist in agent systems, and sensor networks. In this case, as a part of preparing the DT Report,
Prof. Lee provides information about Prof. Durant, which will be used by the system to create two new
resources (Prof. Duran and Université de Bourgogne, where Prof. Durant works) and to instantiate
their resource profiles. It is also possible that Prof. Lee has noticed that research interests of Prof.
Olejnik have changed. They are now semantic web services and social networks. Again, during the
process or preparing the DT Report, information about modified research interests of Prof. Olejnik will
be made available to the system, extracted, and stored (while the log of this modification is going to be
kept as well). In a similar way information about conferences, hotels and/or restaurants is dealt with.
Here we can add that not only a log of every modification, but also a log of all user interactions is kept
in the system. Such logs are to be used to support user profile adaptivity (see, [9, 10] for more details).

3. IMPLEMENTING THE CORE FUNCTIONALITIES

Let us now consider various issues that arise when implementing our system. Let us start from a
simple observation that, as can be seen from the above scenario, agents in the system vary in their
“abilities.” Consider agents representing Prof. Lee and his Director – Prof. Park (see, also [1]). Both
their PA's are designed to support them in their work. However, since Prof. Lee and Prof. Park have
different responsibilities (researchers vs. administrator), their PA's have to be able to perform different
actions. For instance, Director's PA has to help him to approve DT Requests, submitted by researchers
from his laboratory. To achieve this goal, the PA needs (among others) to be able to: (i) access DT
Requests, (ii) access data of all researchers in the laboratory (e.g. to check past travel activities, or if
funds are available in their projects), (iii) change the status of the DT Request to approved or denied,
(iv) check/confirm completion of the DT Report (after the trip). On the other hand, the PA of Prof. Lee
does not have to have any of these capabilities, but has to be able to help him in a way described
above. Let us now use the first part of the sample scenario: preparing the DT Request and receiving the
decision, to discuss top level issues concerning implementation of core functionalities of the system.

A. Implementing agents – generalities

As stated above, when we consider agents supporting individual users, their Personal Agents will
share some functionalities, while differing in others (difference will be associated primarily with the
roles and positions of their “owners” in the organization; see, also [1, 11]). Specifics depend on the
structure of the organization (e.g. depth and breadth of its hierarchical structure) and are represented in
its ontology ([8]). However, it can be assumed that, typically, PA's of “workers” involve functions
associated with specific projects (including the Duty Trip support), while agents supporting managers
need functionalities involved in support of managerial functions (including the Duty Trip processing).
Note also that, in addition to system-centric functionalities, some functions involve access to external
systems (e.g. databases via the JDBC, WebServices, web clients, etc.). Therefore, it is necessary to
also implement functions that allow agents communicating with external artefacts, as well as allowing
agents to be exposed to external systems. One example of such functionality is the gateway between
the external systems and the agent platform, which we describe Section 4.A.

242

Our agent platform of choice is JADE [12]. In JADE agent actions are performed as so-called
behaviours. Obviously, in an actual system most of needed behaviours will be complex and/or cyclic
(repeated periodically, e.g. the PA checking status of the DT Request submitted for approval). Let us
now consider the case of a PA of the Director of the Research Laboratory. Such an agent has to have
behaviours dealing with the Duty Trip Request processing (ManagerDutyTripClientBehaviour). This
also involves the need to access personal data of workers (ManagerPersonalDataClientBehaviour).
However, observe that workers also have to have behaviours dealing with similar issues:
WorkerDutyTripClientBehaviour – responsible for help in preparing the DTR before and the Report
after the trip; and WorkerDataClientBehaviour – allowing worker access to some of her/his personal
data. Therefore, it is easy to observe that the core difference between PA's of the Director and of the
worker will be: which of the behaviours will be made available to it. In this context observe also an
interesting situation when a worker becomes temporarily promoted (e.g. for a 3 year period) to the
position of the Director of the Laboratory. In this case her PA has to be modified by modifying some
worker behaviours and adding appropriate managerial behaviours. First, observe that since Laboratory
Directors also undertake Duty Trips, they still need the basic WorkerDutyTripClientBehaviour,
However their travel requests are approved by someone “higher” in the hierarchy of the organization.
This information is stored in the ontology of the organization and to if provided to the PA during its
modification (in the form of a modified module containing the WorkerDutyTripClientBehaviour, see
below). Second, the ManagerDutyTripClientBehaviour needs to be added to the PA of the promoted
worker. However, when the directorial duty is over, the reverse process has to take place.

These considerations lead us to the main concept used in our agent implementation – the idea of a
module. Module can be seen as a collection of behaviours, that are to be performed in order to support
some high-level functionalities (e.g. Duty Trip processing). Note that modules consists of not only the
list of the behaviours that can run by an agent, but also:

• the description of the module (name, version, meta-information),
• description of data required by those behaviours (e.g. specification of resource profiles that

will need to be accessed),
• pre-launched behaviours (initialized interfaces to shared data model access/monitor services),
• the order of start of behaviours

As described in [10,11], any agent created in the system initially has only one module “built-in.” It
only has the behaviour which is responsible for loading other modules necessary for the agent to fulfil
its role. In the next stage of their creation, agents are adapted to fulfil their specific roles. This is
achieved by loading them with appropriate modules. By default modules are loaded by a specialized
Admin Agent which is one of the auxiliary agents that are instantiated when the system is starting. The
module sent to an agent is a concrete instance of Module class, which is created specially for a given
agent. For instance, in the above presented scenario, Personal Agent of Prof. Lee will be loaded with
modules containing the WorkerDutyTripClientBehaviour and the WorkerDataClientBehaviour, while
the PA of Prof. Park will receive modules containing the ManagerDutyTripClientBehaviour and the
ManagerPersonalDataClientBehaviour. Furthermore, if Prof. Lee was to become the Director of the
Laboratory (and replace Prof. Park), the following actions would be performed (obviously, we limit
our attention only to the sample behaviours, while the the scope of the change is much larger. In the
case of Prof. Park, his PA would “loose” all modules containing managerial behaviours, while modules
concerning worker behaviours would have to be modified. The reverse process would be applied to the
PA of Prof. Lee. Unfortunately, at this stage of our understanding of the JADE agent platform, the
most natural (and easiest from the point of view of the implementation) way of achieving this goal
would involve taking down the whole system, performing maintenance on PA's of Prof. Park and Prof.
Lee, and restarting the system. This issue definitely requires more attention in the future.

B. Storing and managing ontologically demarcated data

As specified above, in addition to software agents, our system is based on utilization of ontologically
demarcated data and semantic reasoning. In our approach, the entire knowledge model is designed in
OWL-DL [13], and the details of its structure have been presented in [8]. As far as data persistence is
concerned, on the lowest level, all data is stored in the PostgreSQL relational database. This data is
accessed and manipulated via the Jena2 Database Interface[14].

243

Observe that, among others, due to the extensive utilization of software agents (JADE is a Java-based
agent system), our system is fundamentally based on Java. Therefore, we notice that, as stated in [15],
there are several benefits of mapping an OWL ontology into Java; e.g. (i) keeping consistency between
the design-stage specifications and applications (including agents), (ii) ease of debugging of the
application or ontology via any Java IDE, and (iii) possibility of use of javadoc as an on-line
documentation of the ontology. Therefore, a set of Java API has been generated from our ontology
schema utilizing Jastor [16], which is an open source Java code generator developed on the basis of
[15]. There are, however, some drawbacks to this approach. The main one is the fact that the structure
of the generated objects is much more complex compared to those in generic object-oriented
development. For example, a Person object is created to describe a person, and it is connected to
multiple objects representing his/her various profiles – PersonProfile, ContactProfile,
ExperienceProfile, and PreferenceProfile. Continuing, we see that the ContactProfile includes another
object – the Address, which in turn includes the City object, and the process repeats. Although such
structure is desirable in the sense of ontology design, such complexity of objects is likely to become
problematic to application developers unless they participated in the ontology design as well. As a
matter of fact we have run into this problem directly due to the fact that the ontology was designed in
Poland, while the application using it was being implemented in Korea. One more consequence of
pursuing this line of system design and implementation, was the need to develop our own gateway
(infrastructure allowing the web-based client communicating in ontologically rich way with the
agent-based core of the system), instead of using the one provided by the JADE. This was the only
way we could deal with the complexity of objects passed into and from the agent system (see Section
4 for details).

C. Implementing ontological matchmaking

Let us now consider the core functionality of our current system – management of recommendation
requests, which is based on ontological matchmaking. The main building block for this function is the
Relevance Calculation Engine (RCE). The two main operations of this module are: (i) creating a
Relevance Graph – a directed labeled graph structure generated from the ontology model for the
purpose of calculation of semantic distance (relevance) between resources, and (ii) matching resources
for the purpose of finding those that are relevant to the given source object (among a list of target
objects). The source object, and a list of target objects are specified, along with other variables (e.g.
the threshold of relevance), in the form of the matching criteria (discussed in [3]). The ontology model
handling is performed by the Jena API [17], while the graph structure is managed utilizing the
Structure Package [18] libraries.

The definition of the Relevance Graph and the method for generating it from an ontology model is
provided in [3], so we will focus here on the implementation-related aspects of the process. During the
development of the system, it was discovered that the graph generation procedure takes a rather long
time, making it impractical to be performed each time there is a request for the relevance calculation.
Recall that relevance calculations are the core (most often performed) operations in the system. We
have also noted that the graph stays unchanged unless there is a change in the data. Therefore, it was
decided to create the Relevance Graph as a background process and save it locally so that the system
can quickly load the structure from a file instead of repeating the time-consuming generation process.
However, each time there is a change in our repository, i.e. when data is added, deleted or updated, an
auxiliary agent responsible for communicating with the data source, uses the Pellet [19] as a reasoner
to generate a Jena ontology model from the semantic data storage. The RCE takes this ontology model
as an input and regenerates the Relevance Graph, which is then locally stored as a binary file,
replacing the old one.

Before considering details of the object matching process, let us briefly describe an additional module
used by the RCE – the GIS sub-system [5, 6, 7], which is used for all geospatial data management. For
the purpose of this module, geographic coordinates of cities were collected via the GeoMaker [20],
and the resulting data was stored in the PostgreSQL database. However, this database is separate from
our semantic data storage and is used only for geospatial data processing. As indicated in the sample
scenario, the GIS sub-system on demand calculates distances between cities, using Great Circle
Distance Formula [21]. Obviously, this method of distance calculation is not an optimal one, from the

244

point of view of the actual travel (e.g. car or train distance is not a straight-line distance). However,
utilizing another service like the Google car travel distance API is not feasible for filtering on a large
scale. On the other hand, note that it would be possible to combine the two methods. Use the Great
Circle Distance Formula for geospatial pre-filtering, while applying the Google API for distance
checking for a limited number of pre-filtered geo-objects.

Note that the GIS sub-system is an “optional” module, and we utilized it because the main purpose of
our system is to support Duty Trips, where the geospatial information is essential. For other
implementation cases, it can be removed (as not needed), or replaced with other module(s) dealing
with other types of domain specific information (e.g. dealing with inputs from sensors).

Fig. 1. Generic Matching Process

The generic matching request handling process is depicted in Figure 1. The matchmaking process can
be conceptually divided into (i) synchronous matching request processing – used for handling requests
requiring a real-time matching and/or requiring a single result based on the current state of the data
storage, and (ii) asynchronous matching request processing – applied to low priority matching, which
needs to be repeated in a certain intervals and results of which can be used multiple times (see [5] for
more details). Following this, two separate matching services have been implemented – the
SyncMatchingService and the AsyncMatchingService, respectively. The former is utilized in our Duty
Trip support system, while the latter supports grant announcement services [4, 5].

Now, let us follow the example of Prof. Lee, trying to obtain recommendations of people to visit
during his trip (seeking conferences, hotels, or restaurants would proceed following exactly the same
procedure). Here, we focus on processing of a specific request, keeping in mind that such request
appears in the context of user-PA interactions (see the sample scenario in Section 2). First, Prof. Lee
initiates request processing by filling appropriate forms and clicking a submit button on the web client.
This request is forwarded to his PA via the gateway (described in Section 4.A). The PA analizes the
received information and forwards it to the auxiliary Matching Agent (MA), where the actual request is
composed. In the process of composing the request, the MA augments it with all variables of matching
criteria (described in [3]), and calls the SyncMatchingService. In that service, the GIS subquery is
processed in the GIS sub-system, and a list of cities that are within a certain range (e.g. 300 km) from
the main destination (e.g. Paris) is returned. Next, the SPARQL query is generated and processed to
obtain a list of (potential) target objects, filtered to obtain the list of objects whose location (specified
in their profiles) is one of the cities resulting from the geospatial filtering. In our example, the PA is
requesting person suggestion, hence a list of ContactPerson objects is returned. Similarly, a list of
Conference objects, or a list of Organization objects would be returned if a conference or an
organization recommendation was requested. The resulting list becomes the list of target objects, and
Prof. Lee (or any other person that a specific PA is representing) becomes a source object. The list and
the object, as well as other needed parameters (e.g. the Threshold value) and the Relevance Graph

245

(loaded from the binary file, described above) are the inputs to the RCE. The RCE calculates the
relevance values from the source object to each of the target objects (e.g. the relevance from Prof. Lee
to each person in the target list), and generates a result in the form of Map <Key, Value> where the Key
is the URI of an object and the Value is its relevance to the source object. Only objects whose
relevance value is above a specific threshold value are returned to the PA; ordered by their relevance.

4. IMPLEMENTING THE AUXILIARY FUNCTIONALITIES

Let us now discuss auxiliary functionalities that were implemented for the system to work.

A. Implementing agent system gateway

Before we proceed, we need to deal with an important assumption that was made while implementing
the current prototype. Overall, what we are dealing with in this section, is the meta-level question –
how an agent system is to be designed. The general assumption behind the concept of agent systems
is: “agents everywhere;” meaning, that the complete system is spread across all needed computers and
Internet-enabled devices. This assumption has been discussed in [22, 23], and shown to be highly
unrealistic. In the case of our system, this translates into the question – where should the Personal
Agent reside. If the PA was to reside on the computer / device of its user, then the system could be
extended to enclose also that machine (the “agents everywhere” type solution). In this case, all
communication within the system could be ACL-based. Unfortunately, this approach leads to a number
of open problems, for instance: (i) what if the user utilizes multiple devices; where will the PA be
located (will it move between devices?) and how will the user be able to communicate with it? (ii) if
the user shuts down her device, then she “takes down” her PA; is this an acceptable solution (in [1] we
have assumed that the PA is going to persistently work to support its user)? (iii) if the user goes
off-line and the mobile PA migrates to the main server of the organization before this happens, then the
user does not have its PA while off-line? (iv) if we have two copies of the PA, one on the user device
and one of the main server, how to deal with their synchronization / integration? This being the case,
to avoid addressing all of these questions, in the current prototype, we have decided that all PA's will
reside within the system, while the user will interact with her PA via the web interface and a gateway.

More generally, our system requires that agents residing within the platform communicate with
software artifacts external to the agent platform. JADE provides two possibilities to achieve such
communication: (i) the low level jade.wrapper.gateway.JadeGateway class, and (ii) the high level
JADE Web Service Integration Gateway (WSIG). Here, we run into the problem caused by the fact that
in the prototype system we have decided that we will utilize complex Java objects (see above, Section
3-B). Therefore, we could not easily take advantage of the WSIG. Instead, we have developed our own
solution based on the jade.wrapper.gateway.JadeGateway. Specifically, we have created a
multi-threaded component processing external users requests. In our solution, the system provides an
API of a gateway queue, which allows for synchronous access to its resources. In the implemented
prototype, we used the queue from the java.concurrent package, but any other queuing mechanism
could have been used. Obviously, this queue has to be also accessible from within the system, where a
set of Gateway Agents (GA) monitor its status and process information. In this way the queue becomes
a de facto interface between the agent platform and the outside world. Unfortunately, we have to admit
that this solution is not FIPA [24] compliant.

Let us now consider interactions that involve information crossing the gateway. A thread representing
an outside entity (e.g. a user web client) utilizes the Gateway API to put a request into the gateway
queue, and awaits notification on a specific object. More precisely, objects of the type Event, which
are wrapping the Request are put into the queue. The thread is waiting on that Event for the agent to
process the Request. Upon completion of Request processing, the agent packs the Result into the Event
and calls the Event (thus notifying the thread that the Result is ready to be picked up).

The gateway queue is monitored by the GA's. These agents utilize a special register, which is
user-configurable and which allows to map user requests to ACL messages. Register configuration can
be achieved in many different ways. In the current implementation translation between request and
message is hard-coded, however, as the system develops, we plan to design and implement special

246

classes that will make the system more flexible and allow configuration to be completed on the basis
of XML configuration files.

On the technical side, the register contains a map of objects (the ExternalService). Each of them, a
single service, has its own unique name and describes: (i) application-specific ontologies for agent
communications, (ii) codecs needed by the agents, and (iii) actions, ServiceAction. Here, the
ServiceAction contains information that will allow translation of a request into an ACL message. For
example, let us assume that a PA utilizes the DtaExternalOntology, to understand what to do when
dealing with requests. This is a special ontology designed to facilitate interactions with external
entities. It has description of actions that can be undertaken by agents. For each action, there is an
object which is an extension of the class AgentAction. Such an object can contain parameters used by
the agent to perform an action. Let us assume that, within the ontology, the following two actions are
defined – APPROVE_DTA and GET_DTA_LIST. Implementing a service which allows the use of these
two actions, we create objects of class ExternalService, which contains the following fields:

– name: DtaService
– ontology: DtaExternalOntology
– codec: SLCodec
– actionMap (external_service_map: ServiceAction)

The ActionMap, on the other hand, contains descriptions of actions, for instance:
ServiceAction:

– name: ”approveDta”
– ontology: DtaExternalOntology
– codec: SLCodec
– parametersMapping (map of parameters of the request to parameters of the action)

Then, the request in the gateway queue is generalised as follows:
Request:

– serviceName: DtaService
– actionName: approveDta
– parameters: (dutyTrip: object dutyTrip)
– agentName: name / ID of a specific Personal Agent

This allows the GA, which picks the request from the gateway queue, to create an ACL message. First,
it uses the Request to find the right service, based on the serviceName (here, the DtaService). Next, in
case it does not already have the right ontology (the DtaExternalOntology), it registers it and also the
codecs (the SLCodec). Then it finds the requested action(s) (the approveDta action). Based on that
action, it generates the ACL message, with the codec, the ontology, and the action object created using
the reflection. Message is sent to the agent specified in the Request (the agentName defines it).
Obviously, the target agent can: (i) perform an action and send the result back, (ii) reject the request,
etc. Depending of the result of the action, the RequestResult is generated and sent back to the GA. The
GA, in turn, informs the thread that generated the Request, that it has been completed (by calling an
appropriate Event; see above).

In the current version of our system, we use a 1:1 mapping between ontologies and services. In other
words, services contain all actions of the ontology. Even though currently we use a special function
that creates the service object using a reflection (where the input is the ontology, actions of which we
would like to make available), we also acknowledge that this is not the only possible solution. It would
be also possible to generate services that would contain configurations “internally.” In this case, names
of actions and parameters would be identical to those in the ontology.

Please be reminded that the ontology mentioned in this section is an application-specific ontology
describing the elements to be used as the content of agent messages, and do not confuse it with the
semantic knowledge space used in our system.

5. CRITICAL ANALYSIS

Across the paper we have pointed out to a number of controversial points in our implementation, as
well as places where it could have been decided to implement things differently. Here we would like to

247

look into some other issues that materialized during the system implementation. The first, and the
main one is our overall experience. Based on what we came across in our work, we cannot agree with
N. Jennings, who (in [25]) claimed that software agents and agent systems are the future of design and
implementation of complex systems. While this claim may be valid sometime in the future, today’s
implementation and maintenance of an agent system (maintenance understood as following the spiral
model of system design, where after the initial design and testing phase, modifications ensue) turn out
to be more difficult than in the case of traditional systems. For instance, one of major sources of
problems turns out to be dealing with utilization of agents and ontologies in the same system. Any
change in the agent side, requires immediate changes in the ontologies and such changes usually are
non-trivial. This also contradicts to some extent major claims put forward by J. Handler in [26]. All of
our experiences show, that currently available tools for development of agent systems have not
reached the level of maturity required for the visions found in [25, 26] to materialize.

Other, lesser, problems that we came across were as follows. (i) It is extremely difficult to develop an
agent system that will be at least to some extent resilient to failure. Even though existing agent tools
are characterized by quite good scalability (see, for instance [27]) they turn out to be rather “fragile”
and there is no simple way to “harden” them. (ii) As mentioned above, the only realistic way to
introduce changes into the (JADE) system is by stopping it completely, introducing changes and
restarting. While we have started working on methods to address this problem, we could not find a
solution that would be simple enough to attempt at implementing it. Again, this is in conflict with
conjectures presented in [25] and points to overall weakness of JADE. (iii) For all practical purposes it
is impossible to assure that agent functionality is protected. This indicates, that security of agent
systems remains an open research question (for an overview of agent system security, see [28]). (iv)
We have found, again (see, also [29]) that strict conformance to FIPA standards is unreasonable. More
precisely, remaining in strict conformance to the FIPA standard is possible primarily in systems which
are built according to the “agents everywhere” metaphor. Anytime an agent system has to
communicate with non-agent world, FIPA conformance becomes a problem. Furthermore, FIPA
standard is also a problem as soon as system performance is considered (see, [27, 29]).

6. CONCLUDING REMARKS

The goal of this paper was to report on issues materializing when implementing a system based on
joint utilization of software agents and ontologies. In addition to the description of most important
facets of our prototype implementation, we have acknowledged other possible approaches to the
implementation of its parts. Furthermore, we have summarized lessons learned during our work. Here,
our conclusions are somewhat pessimistic. It is now 10 years after publication of the highly critical,
but very insightful work of H. Nwana and D. Ndumu ([30]). This work contained pragmatic guidelines
for progressing in the field of agent systems research. Unfortunately, it does not seem that the agent
community has followed these guidelines, as we have found in practice that software agents combined
with ontologies as an approach to complex system design and implementation, and even more so
existing tools developed to help in this process, are not yet ready for prime time.

ACKNOWLEDGMENTS

Work of Grzegorz Frąckowiak, Sang Keun Rhee, Michał Szymczak, and Myon Woong Park was
partially sponsored by the KIST-SRI PAS collaborative grant ”Agent Technology for Adaptive
Information Provisioning”.

REFERENCES

[1] M. Szymczak, G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M.-W. Park, “Resource
Management in an Agent-based Virtual Organization – Introducing a Task Into the System, in Proceedings
of the MaSeB Workshop, IEEE CS Press, Los Alamitos, CA, pp. 458 – 462, 2007.

[2] M. Ganzha, M. Paprzycki, M.Gawinecki, M. Szymczak, G. Frackowiak, C. Bădică, E. Popescu,
M.-W. Park, “Adaptive Information Provisioning in an Agent-Based Virtual Organization - Preliminary
Considerations,” in V. Negru et. al. (eds.), Proceedings of the SYNASC Conference, IEEE CS Press, Los
Alamitos, CA, pp. 235 – 241, 2007.

248

[3] S. K. Rhee, J. Lee, M.-W. Park, M. Szymczak, G. Frackowiak, M. Ganzha, M. Paprzycki, “Measuring
Semantic Closeness of Ontologically Demarcated Resources,” in Fundamenta Informaticae, 96, pp. 395 –
418 2009.

[4] M. Szymczak, G. Frackowiak, M. Ganzha, M. Paprzycki, S. K. Rhee, J. Lee, Y. T. Sohn, Y.-S. Han,
M.-W. Park, “Ontological Matchmaking in a Duty Trip Support Application in a Virtual Organization,” in
Proceedings of the 2008 Multiconference on Computer Science and Information Technology, IEEE CS
Press, Los Alamitos, CA, pp. 243 – 250, 2008.

[5] M. Szymczak, G. Frackowiak, M. Ganzha, M. Paprzycki, S. K. Rhee, M.-W. Park, Y.-S. Han, Y. T. Sohn, J.
Lee, J. K. Kim, “Infrastructure for Ontological Resource Matching in a Virtual Organization,” in C. Badica
et. al. (eds.), Intelligent Distributed Computing, Systems and Applications, Springer, Berlin, pp. 11 – 22,
2008.

[6] G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak, M.-W. Park, Y.-S. Han,
“Considering Resource Management in Agent-Based Virtual Organization,” in N. Nguyen, L. C. Jain
(Eds.), Intelligent Agents in the Evolution of Web and Applications, Springer, Berlin, pp. 161 – 190, 2009

[7] G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak, M.-W. Park, Y.-S. Han, “On
Resource Profiling and Matching in an Agent-Based Virtual Organizatnion.” in: L. Rutkowski et. al. (eds.),
Artificial Intelligence and Soft Computing – ICAISC 2008, LNAI, Springer, Berlin, pp. 1210 – 1221, 2008.

[8] M. Szymczak, G. Frackowiak, M. Gawinecki, M. Ganzha, M. Paprzycki, M.-W. Park, Y.-S. Han,
Y. T. Sohn, “Adaptive Information Provisioning in an Agent-Based Virtual Organization – Ontologies in the
System,” in N. T. Nguyen (ed.), Proceedings of the AMSTA-KES Conference, LNAI 4953, Springer,
Heidelberg, Germany, pp. 271 – 280, 2008.

[9] C. Bădică, E. Popescu, G. Frackowiak M. Ganzha, M. Paprzycki, M. Szymczak, M.-W. Park, “On Human
Resource Adaptability in an Agent-Based Virtual Organization,” in: N. T. Nguyen and R. Katarzyniak
(eds.), New Challenges in Applied Intelligence Technologies, Springer, Berlin, pp. 111 – 120, 2008.

[10] M. Ganzha, M. Gawinecki, M. Szymczak, G. Frackowiak, M. Paprzycki, M.-W. Park, Y.-S. Han,
Y. T. Sohn, “Generic Framework for Agent Adaptability and Utilization in a Virtual Organization -
Preliminary Considerations,” in: J. Cordeiro (et. al.), Proceedings of the 2008 WEBIST Conference,
INSTICC Press, Setubal, Portugal, pp. IS-17 – IS-25, 2008.

[11] G. Frackowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak, C. Badica, Y.-S. Han, M.-W. Park,
“Adaptability in an Agent Based Virtual Organization,” in: International Journal of Agent-Oriented
Software Engineering, Vol. 3, No. 2/3, pp. 188 – 211, 2009

[12] JADE, http://jade.tilab.com/
[13] OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/
[14] Jena2 Database Interface, http://jena.sourceforge.net/DB/
[15] A. Kalyanpur, D. J. Pastor, S. Battle, J. Padget, “Automatic Mapping of OWL Ontologies into Java,” in

Proceedings of the 6th Int. Conference on Software Engineering and Knowledge Engineering, 2004.
[16] Jastor, http://jastor.sourceforge.net/
[17] Jena – A Semantic Framework for Java, http://jena.sourceforge.net/
[18] Java Structure, http://www.cs.williams.edu/~bailey/JavaStructures/Software.html
[19] Pellet: The Open Source OWL 2 Reasoner, http://clarkparsia.com/pellet/
[20] Geomaker, http://pcwin.com/Software_Development/GeoMaker/index.htm
[21] http://www.meridianworlddata.com/Distance-calculation.asp
[22] M. Gordon, M. Paprzycki, V. Galant, “Agent-Client Interaction in a Web-based E-commerce System” in

D. Grigoras (ed.), Proceedings of the International Symposium on Parallel and Distributed Computing ,
University of Iaşi Press, Iaşi, Romania, pp. 1 – 10, 2002.

[23] M. Gawinecki, M. Gordon, P. Kaczmarek, M. Paprzycki, The Problem of Agent-Client Communication on
the Internet,” in Scalable Computing: Practice and Experience , 6(1), pp. 111 – 123, 2005.

[24] FIPA, http://www.fipa.org
[25] N. R. Jennings, “An agent-based approach for building complex software systems,” in Communications of

the ACM, 44 (4), pp. 35 – 41, 2001.
[26] J. Hendler, “Agents and the Semantic Web,” in IEEE Intelligent Systems, 16(2), pp. 30-37, 2001.
[27] K. Chmiel, M. Gawinecki, P. Kaczmarek, M. Szymczak, M. Paprzycki, “Efficiency of JADE Agent

Platform,” in Scientific Programming, 13(2), pp. 159 – 172, 2005.
[28] Ł. Nitschke, M. Paprzycki, M. Ren, “Mobile Agent Security,” in J. Thomas, M. Essaidi (eds.), Information

Assurance and Computer Security, IOS Press, Amsterdam, 102 – 123, 2006.
[29] K. Wasielewska, M. Gawinecki, M. Paprzycki, M. Ganzha, P. Kobzdej, “Optimizing Blackboard

Implementation of Agent-Conducted Auctions,” in IADIS International Journal on WWW/Internet , 6(1),
pp. 50 – 60, 2008.

[30] H. S. Nwana & D. T. Ndumu, “A Perspective on Software Agents Research,” in The Knowledge
Engineering Review, 14(2), pp. 1 – 18, 1999

249

http://jena.sourceforge.net/DB/
http://www.fipa.org/

