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Abstract: In this paper we give a new technique to obtain the Hamiltonian 
function in order to solve the driftless control affine systems (distributional 
systems) with positive homogeneous costs. The method consists by using 
the Lagrange multipliers and Legendre transformation associated to a 
singular Lagrangian. This method could be an alternative to the classical 
Pontryagin Maximum Principle. 
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1. INTRODUCTION  
The model offers an intuitive picture, but rigorous study of the phenomenon 

and allows finding a link between the various sizes that characterize the economic 
process. Along the models of macro and microeconomic type, econometric, the 
mathematical models are characterized by finding the optimal solution or as close to 
optimum [2], [3], [6].  

It is well-known that the solution of a control affine system is provided by 
Pontryagin’s Maximum Principle [1]: that is, the curve ))(),(()( tutxtc =  is an optimal 
trajectory if there exists a lifting of  to the dual space satisfying the 
Hamilton’s equations.  
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In this paper we give a new formula which permit us to find the Hamiltonian on the 
dual space, using the Lagrange multipliers and Legendre transformation. The paper is 
organized as follows. In the second section are presented the preliminaries on driftless 
control affine systems and is given the expresion of the Hamiltonian function. In the 
last part, using the new formula for the Hamiltonian, some illustrative examples are 
given. Other point of view involving Lie algebroids is given in [4]. 

2. CONTROL AFINE SYSTEMS  
Let us consider the drift-less control affine system (called also distributional systems) in 
the space 

nR  on the form 
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with ,  vector fields iniX mi ,...,1= nR  and the controls ),...,,( 21 muuuu = take 

values in an open subset nR⊂Ω . The vector fields  generate a distribution iX
nRD ⊂ such that the rank of D is assumed to be constant.  

Let and  be two points of 0x 1x nR . An optimal control problem consists of finding 
those trajectories of the distributional system which connect and , while 
minimizing the cost  
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where F is a positive homogeneous cost (Minkowski norm ) on . D

We consider the Lagrangian function of the form 
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and it results  
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But, on the other hand, we have 
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and from (2) and (3) we obtain 
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or, in the equivalent form 
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The system (4) is a linear system in , iu mi ,...,1=  and rankA=rankD=m.  
We suppose, without lose the generality (can by changed the lines into the system) that 
the first m lines are linearly independent.  Let be the matrix built from the initial 

preserving first j lines , and we obtain  

i
jm

i
ja mji ,...,1, =



 

,
1

j
i

m

i

ij mux ∑
=

⋅

=
 

which yields  

)5(,)( 1

1

.
−

=
∑= i

j

m

i

ji mxu
 

But from the system (4) remains n-m equations, i.e. we have n-m constraints of the 
control system, in the form (Einstein sumation) 
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From (5) follows  
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Then, using the Lagrange multipliers, we obtain the total Lagrangian (including the 
constraints) given by 
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Remark 1. The Euler-Lagrange equations for the total Lagrangian have the expression 
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or, in the equivalent form 
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But, we observe that the Hessian matrix of L’ is singular, that is  
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for r=1,...,n and mji ,...,1, = , so L’ is a degenerate Lagrangian (singular). 
     Next, using the Legeandre transformation, we can find the Hamiltonian function on 
the dual space, on the form  
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which leads to the following system  
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Then, we obtain  
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because L is 2-homogeneous function with respect to and it results the equality  
.
ix

),(),(
.
ixxLpxH = . 

Let us consider the Hamiltonian 
~
H  associated to the Lagrangian L on the distribution 

D on the form  
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we obtain the following formula  
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Now, using the previous notations and considerations, we can present the main result of 
the paper: 
Theorem 1. The Hamiltonian H on the dual space associated to the total Lagrangian 
L’ has the form  
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3. SOME EXAMPLES  
Example 1. Let us consider the driftless control affine system 
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and minimizing the cost  
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where ( ) ( )232221 )( uuuF ++= is the quadratic cost (Euclidian metric). 
The distribution >=< 321 ,, XXXD  generated by  has constant rank 3 
and the system of restrictions has the form 
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Let  
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which yields the following equations  
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or equivalent  
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The Lagrangian has the form 
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or, in the equivalent form with  
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Using these relations we can find the Hamiltonian on the dual space  
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Example 2. Let us consider the driftless control affine system 
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where ( )2221)( uuF += is the quadratic cost (Euclidian metric). 
The distribution  generated by has constant rank 2 and 

the system of restrictions has the form 
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Let  be the reduced matrix with rank =2 and it results 
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Using these relations we can find the Hamiltonian on the dual space  
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Example 3. Let us consider the driftless control affine system (Heisenberg group) 
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where ( ) 12221)( uuuF ε++= , 1<ε  is the positive homogeneous cost (Randers 
metric). 

The distribution  generated by  has constant rank 2 and 
the system of restrictions has the form 
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Let  be the reduced matrix with rank =2 and it results 
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But, we have the equalities 
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lead to the following expression for the Hamiltonian function 
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5. CONCLUSIONS  
In this paper we give a new formula which permit us to find the Hamiltonian 

function on the dual space, using the Lagrange multipliers and Legendre transformation 
associated with a singular Lagrangian.  This tehnique could be an alternative to the 
classical Pontryagin Maximum Principle in the case of distributional systems. In last 
part of the paper, some illustrative examples are given.. 
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