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Abstract: In this paper we continue the study of distributional systems
(drift less control affine systems) with quadratic cost and no constant rank
of distribution. We will use the Pontyagin Maximum Principle and the
constants variation method for nonhomogeneous second order differential
equations to find the general solution.
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1. INTRODUCTION

This paper continues the study of distributional systems started by the first
author in [3], [4], [5], [6], [7], [8], [9]. It is well known that the optimal solution of a
distributional system (see [1]) is provided by Pontryagin's Maximum Principle: that is,
the curve c(t) = (X(t),u(t)) is an optimal trajectory if there exists a lifting of X(t) to
the dual space (X(t), p(t)) satisfying the Hamilton's equations.

We have to remark that the optimal solutions of our system are the geodesicsin
the so-called sub-Riemannian geometry (see [2]). We find the general solution of the
control problem using the constants variation method for nonhomogeneous second
order differential equations. We are in the case of strong bracket generating distribution
(i.e. the vector fields of distribution and the first iterated Lie brackets generate the entire
space R?). The well-known Chow’s theorem quarantees that the system is controllable,
that is the system can be brought from any state X, to any other state X, . The second

section isintroductory in the theory of distributional systems.

2. DISTRIBUTIONAL SYSTEMS

We consider a distributional systems in the space R" in the following form
(see[2])

X(1) = LU (DX (X0)) @
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where X, , i::L_m are vector fields in the space R" and the controls
u=(u,U,,..,Uu,) take values in an open subset Q = R". The vector fields X,
generate adistribution D < R"such that the rank of D is not necessarily constant.

An optimal control problem consists of finding those trajectories of the
distributional system which connect any two pointsx, and X, from R", while
minimizing the cost

min | F (x(®),u(®)dt, @
u(.

where F isthe quadratic cost F = }Zuf(t) on D.
i=1

The optimal solutions are obtained by integrating the system (1). If the
distribution D is bracket generating (i.e. the vector fields of D and iterated Lie brackets

generate the entire space R"), then by awell-known theorem of Chow the system (1) is
controllable, that is for any two points X, and X, there exists an optimal trajectory

which connects these points.
The necessary conditions for a trajectory to be optimal are given by Pontryagin
Maximum Principle. The Hamiltonian has the form [1]

H(x, p,u)=< p,X > —L(x,u),, (3)
where p is the momentum variable on the dual space and L = % F? is the Lagrange

function. The maximixation condition with respect to the control variables u, namely
H (x(1), p(t), u(®)) = max H (x(t), p(t),v),
leads to the equations
OH (X, p,u)
ou -
and the optimal trajectories satisfy the Hamilton’ s equations
dx' oH dp _ oH

dt op’ dt X

0, (4)

©)

3. APPLICATION
Let us consider adistributional system in the space R® of the form

X(t)=Uu'X, +u2X, +u®X,, (6)
with thevectors X,, X,, X, given by
1 0 0
X, =10, X, ={1], X;=|1
0 0 X

and minimizing the functional
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where F = \/(ul)z +(u®)? + (u®)? isthe quadratic cost.

In the following we assume that the trajectories are parameterized by arclength
and starting from the origin. The distribution D is generated by the vectors X, X,, X,
and the rank of distribution is not constant

3 if x=0,
rankD = )
2 if x=0.

In the canonical base of the three dimensional space R3, iii the
oX oy 0z

vectors X, X,, X, have the following expressions
X, =2, X, =2, X =L ax 2

oX oy oy o0z

[X,gY]= fg[X,Y]+ fX(g)Y — gY(f )X,
the Lie brackets of the vectors X, X,, X are given by

Using the formula

[Xl,Xz]ZO,
[X,,X,]= i,i+xi = ii +[£,Xi:|=£=x4¢D,
ox oy 0z oX oy oX 0z| oz
[Xz,X3]={i,i+x£}:{i,i +[£,x£}:0,
oy oy 0z| |0y oy| oy 0z
[Xl,X4]=O,[X2,X4]=O, [Xg,X4]=0.
0
We obtain that X, =| 0| and the vectors { X, X,, X, X, =[X,, X;]}
1

generate the entire space R®. It result that the distribution is not integrable
(nonholonomic), but is strong bracket generating, that is the vector fields of the

distribution and the first iterated Lie brackets span the entire space R®.
From the relation (6) we obtain
1
u
X(t)=u'X, +u?X, +u’X, =| u”+u® |,
u’x
and it results
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x=u"
y=u’+u’

Z=Uu°x
Considering the Lagrangian function L:%F2 2%((u1)2 +(u2)2 +(u3) )
the Pontryagin maximum principle leads to the following Hamiltonian function
H(x,p,u)=< p,X >—-L(u)= p,ut+ pz(u2 +u3)+ p3u3x—%((u1)2 +(u2) +(u3)2).

The conditionn (4) yields the equations

%zO@ p,-u'=0< p, =u',
%:OQ p,-u’=0& p, =U?,
%:OQ p, + p;x—u’=0< p, + p,x=u’.

and the Hamiltonian has the form
1
H(x,p)=(py)? +(p,)2 +(p, + psx)Z—E(( Py )%+ (P )2 +( Py + PyX)? )=

1 1
=5 (p) +(p2)" +2-(Pa)"x* + p, px
The Harﬁilton’s equations (5) lead to the following system of partial differential

equations
dx oH

& op, ™
dy oH
— = =2p, + psX,
dt op, P, + Ps
gzﬁsz%px
d op, ° 2
dp, oH 2
_— = —_—— = — X - ,
ot P~ (Ps)"X—P,P;
dpz——ﬁ:O:p =a
dt oy 2
dp, oH
=——=0 =D,
dt 0z = P

where a,b arerea constants. It results
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2 d 2
d Z(:ﬂz—bzx—ab: d 2X+b2x:—ab. This is a second order
dt dt dt
nonhomogeneous differential equation. We consider the corresponding homogeneous
d?x

differential equation +b?x=0, with the characteristic equation r?+b” =0.

dt?
The solutions r,, = +bi lead to the general solution of the second order homogeneous

differential equation
X(t) =c, cosbt + ¢, sinbt,

where ¢,,C, € R.
Using the constants variation method, we are looking for a particular solution of a
nonhomogeneous differential equation of the form X(t) = a, (t)cosbt + , (t)sinbt
satisfying the equations

a, cosbt+a, sinbt =0 @)

—a,bsinbt +a,bcosbt = —ab ®)

The equation (7) multiplied by bsinbt plus equation (8) multiplied by cosbt yields

a, =—acosbt and it results ¢, = —%Sinbt .

Also, the equation (7) multiplied by bcosbt minus equation (8) multiplied by sinbt
yields

a, =asinbtandit results a, = —%Cosbt :

The particular solution of the second order nonhomogeneous differential equation has
the form

x(t)=-2cos?bt - 2sin?bt = -2,
b b b
and it results the general solution

. a
X(t) =c, cosht +c, smbt—B.
. a . .
But x(0) =Oanditresults ¢, = b’ that is the general solution has the form

x(t)=%(cosbt—1)+csinbt, ceR (9)

From the equation % = 2a+ bx we obtain

% = 2a+ a(cosbt — 1)+ bcsinbt
and it results
dy ;
o = a+acosbht + bcsinbt

with the solution
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y(t):at+%sinbt—ccosbt+d, deR.
But y(0)=0and it results d = ¢, which give the solution

y(t) = at+%sinbt+c(1—cosbt). (10)

z
The equation % = bx® + ax leadsto

2
%zb{%(cosbt—l)+csinbt] +a[%(cosbt—1)+csinbtj.
By direct computation it results
dz a* |, . a’ . .
E:_COS bt +bc” sin bt—Fcosbt+acsm2bt—acsnbt,

with the solution

2 2 2 2 2
2(t)= a2 sin2bt+ 28-S gnopt + € t—a—zsinbt—ﬁc052bt+§cosbt,
4b 2b 4 2 b 2b b

or

2 2 2 2 2
2(t)= a2 _c sin2bt—a—zsinbt—§0052bt+§cosbt+ a—+bi t+d.
4b 4 b 2b b 2b 2

But z(0)=0 andit results d = —% that is the solution has the form

2 2

2 2 2
2(t) = a__°c 'n2bt—a—sinbt—%(COSth+1)+§cosbt+ a’ bty
b? 2b b

4> 4 2b 2

dp,

From the equation = —b*x—ab it results

ap, _ —bz(g(cosbt ~-1)+ csinbtj— ab,
dt b

or in the equivalent form
b,

= —abcosht —b?csinbt,
dt

with the solution
p,(t) = —asinbt + bccosht.
In these conditions the Hamiltonian has the form

H :%(—asinbt+bccosbt)2 +a’ +21b2x2 +abx.
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2.2

By direct computation it results H =a® + Considering that the optimal

trajectories are parametrized by arclength, that is (u')? + (U%)? + (u®)? =1 we obtain
2.2

H 2%,Whichyields a® + :Eandweobtain

_ 2
c:i%, bx0 ae{

1 i}
J2'y2]

which end the proof.

Finally, the optimal solution has the form

942
x(t) :%(cosbt—1)+ csinbt, c= i%,

y(t) = at +%sinbt +¢(1-cosbt),

2 2 2 2 2
2(t)= a2 _c 'n2bt—a—zsinbt—ﬁ(COSth+1)+Ecosbt+ a by
b 4 b 2b b 2b 2

4. CONCLUSIONS

We have obtained the general solution of a distributional system with quadratic
cost and no constant rank of distribution, using the Pontryagin Maximum Principle. The
Hamilton’'s equations lead to a nonhomogeneous second order differential ecuation. We
apply the constants variation method in order to find the general solution.
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