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Abstract: In this paper we continue the study of distributional systems 
(drift less control affine systems) with quadratic cost and no constant rank 
of distribution. We will use the Pontyagin Maximum Principle and the 
constants variation method for nonhomogeneous second order differential 
equations to find the general solution. 
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1. INTRODUCTION  
This paper continues the study of distributional systems started by the first 

author in [3], [4], [5], [6], [7], [8], [9]. It is well known that the optimal solution of a 
distributional system (see [1]) is provided by Pontryagin's Maximum Principle: that is, 
the curve  is an optimal trajectory if there exists a lifting of  to 

the dual space  satisfying the Hamilton’s equations.  
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We have to remark that the optimal solutions of our system are the geodesics in 
the so-called sub-Riemannian geometry (see [2]). We find the general solution of the 
control problem using the constants variation method for nonhomogeneous second 
order differential equations. We are in the case of strong bracket generating distribution  
(i.e. the vector fields of distribution and the first iterated Lie brackets generate the entire 

space 3R ). The well-known Chow’s theorem quarantees that the system is controllable, 
that is the system can be brought from any state  to any other state . The second 
section is introductory in the theory of distributional systems. 
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2. DISTRIBUTIONAL SYSTEMS  

We consider a distributional systems in the space nR  in the following form 
(see [2]) 
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where , iX mi ,1  are vector fields in the space nR  and the controls 

 take values in an open subset ),...,( 1 muuu  , 2u nR . The vector fields  

generate a distribution 

iX
nRD  such that the rank of D is not necessarily constant.  

An optimal control problem consists of finding those trajectories of the 

distributional system which connect any two points  and  from 0x 1x nR , while 

minimizing the cost  
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The optimal solutions are obtained by integrating the system (1). If the 
distribution D is bracket generating (i.e. the vector fields of D and iterated Lie brackets 

generate the entire space nR ), then by a well-known theorem of Chow the system (1) is 

controllable, that is for any two points  and  there exists an optimal trajectory 

which connects these points.  
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The necessary conditions for a trajectory to be optimal are given by Pontryagin 
Maximum Principle. The Hamiltonian has the form [1] 
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where p is the momentum variable on the dual space and 2
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1 FL   is the Lagrange 

function. The maximixation condition with respect to the control variables u, namely 
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and the optimal trajectories satisfy the Hamilton’s equations  
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3. APPLICATION  

Let us consider a distributional system in the space 3R  of the form  
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with the vectors , ,  given by 1X 2X 3X
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and minimizing the functional         
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where 232221 )()()( uuuF   is the quadratic cost.  

In the following we assume that the trajectories are parameterized by arclength 
and starting from the origin. The distribution D is generated by the vectors  

and the rank of distribution is not constant 
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Using the formula  
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the Lie brackets of the vectors are given by 321 ,, XXX
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R . It result that the distribution is not integrable 
(nonholonomic), but is strong bracket generating, that is the vector fields of the 

distribution and the first iterated Lie brackets span the entire space 3R .  
From the relation (6) we obtain  
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Considering the Lagrangian function       2322212 uuu
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the Pontryagin maximum principle leads to the following Hamiltonian function 
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and the Hamiltonian has the form  
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The Hamilton’s equations (5) lead to the following system of  partial differential 
equations 
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where a,b are real constants. It results 
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By direct computation it results  .
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4. CONCLUSIONS  
We have obtained the general solution of a distributional system with quadratic 

cost and no constant rank of distribution, using the Pontryagin Maximum Principle. The 
Hamilton’s equations lead to a nonhomogeneous second order differential ecuation. We 
apply the constants variation method in order to find the general solution. 
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